
CS 445: Combinatorics
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Basics

2

Graphs

• Definition A graph 𝐺 is a pair (𝑉, 𝐸)
• 𝑉: set of vertices

• 𝐸: set of edges

• 𝑒 ∈ 𝐸 corresponds to a pair of endpoints 𝑥, 𝑦 ∈ 𝑉

3

x y

z w

We mainly focus on
Simple graph:
No loops, no multi-edges

Graphs: All about adjacency

• Same graph or not

• Two graphs 𝐺1 = 𝑉1, 𝐸1 , 𝐺1 = 𝑉2, 𝐸2 are isomorphic if there is a
bijection 𝑓: 𝑉1 → 𝑉2 s.t.

𝑒 = 𝑎, 𝑏 ∈ 𝐸1 ⟺ 𝑓 𝑒 := 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐸2

4

(a) (b) (c)

Example: Complete graphs

• There is an edge between every pair of vertices

5

Example: Regular graphs

• Every vertex has the same degree

6

Example: Bipartite graphs

• The vertex set can be partitioned into two sets 𝑋 and 𝑌 such that
every edge in 𝐺 has one end vertex in 𝑋 and the other in 𝑌

• Complete bipartite graphs

7

Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

8

Example: Peterson graph (cont.)

• Show that the following two graphs are same/isomorphic

9

Subgraphs

• A subgraph of a graph 𝐺 is a graph 𝐻 such that
𝑉 𝐻 ⊆ 𝑉 𝐺 , 𝐸 𝐻 ⊆ 𝐸 𝐺

and the ends of an edge 𝑒 ∈ 𝐸(𝐻) are the same as its ends in 𝐺
• 𝐻 is a spanning subgraph when 𝑉(𝐻) = 𝑉(𝐺)

• The subgraph of 𝐺 induced by a subset 𝑆 ⊆ 𝑉(𝐺) is the subgraph whose
vertex set is 𝑆 and whose edges are all the edges of 𝐺 with both ends in 𝑆

10

Paths (路径)

• A path is a non-empty alternating sequence 𝑣0𝑒1𝑣1𝑒2…𝑒𝑘𝑣𝑘
where vertices are all distinct
• Or it can be written as 𝑣0𝑣1…𝑣𝑘 in simple graphs

• 𝑃𝑘: path of length 𝑘 (the number of edges)

11

Walk (游走)

• A walk is a non-empty alternating sequence 𝑣0𝑒1𝑣1𝑒2…𝑒𝑘𝑣𝑘
• The vertices not necessarily distinct

• The length = the number of edges

• Proposition (1.2.5, W) Every 𝑢-𝑣 walk contains a 𝑢-𝑣 path

12

Cycles (环)

• If 𝑃 = 𝑥0𝑥1…𝑥𝑘−1 is a path and 𝑘 ≥ 3, then the graph 𝐶 ≔ 𝑃 +
𝑥𝑘−1𝑥0 is called a cycle

• 𝐶𝑘: cycle of length 𝑘 (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

13

Neighbors and degree

• Two vertices 𝑎 ≠ 𝑏 are called adjacent if they are joined by an edge
• 𝑁(𝑥): set of all vertices adjacent to 𝑥

• neighbors of 𝑥

• A vertex is isolated vertex if it has no neighbors

• The number of edges incident with a vertex 𝑥 is called the degree of 𝑥
• A loop contributes 2 to the degree

• A graph is finite when both 𝐸(𝐺) and 𝑉(𝐺) are finite sets

14

Handshaking Theorem (Euler 1736)

• Theorem A finite graph 𝐺 has an even number of vertices with odd
degree

15

x y

z w

Proof

• Theorem A finite graph 𝐺 has an even number of vertices with
odd degree.

• Proof The degree of 𝑥 is the number of times it appears
in the right column. Thus

෍

𝑥∈𝑉(𝐺)

deg(𝑥) = 2 𝐸(𝐺)

16

Degree

• Minimal degree of 𝐺: 𝛿 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Maximal degree of 𝐺: ∆ 𝐺 = max 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Average degree of 𝐺: 𝑑 𝐺 =
1

𝑉
σ𝑣∈𝑉 𝑑(𝑣) =

2 𝐸

𝑉

• All measure the `density’ of a graph

• 𝑑(𝐺) ≥ 𝛿(𝐺)

17

Degree (global to local)

• Proposition (1.2.2, D) Every graph 𝐺 with at least one edge has a
subgraph 𝐻 with

𝛿 𝐻 >
1

2
𝑑(𝐻) ≥

1

2
𝑑(𝐺)

• Example: 𝐺 = 7, 𝑑 𝐺 =
16

7

• 𝛿 𝐻 = 2, 𝑑 𝐻 =
14

5

18

H

Minimal degree guarantees long paths and
cycles
• Proposition (1.3.1, D) Every graph 𝐺 contains a path of length 𝛿(𝐺)

and a cycle of length at least 𝛿 𝐺 + 1, provided 𝛿(𝐺) ≥ 2.

19

Distance and diameter

• The distance 𝑑𝐺(𝑥, 𝑦) in 𝐺 of two vertices 𝑥, 𝑦 is the length of a
shortest 𝑥~𝑦 path
• if no such path exists, we set 𝑑 𝑥, 𝑦 ≔ ∞

• The greatest distance between any two vertices in 𝐺 is the diameter
of 𝐺

diam 𝐺 = max
𝑥,𝑦∈𝑉

𝑑(𝑥, 𝑦)

20

Example -- Erdős number

• A well-known graph
• vertices: mathematicians of the world

• Two vertices are adjacent if and only if they have
published a joint paper

• The distance in this graph from some mathematician to the
vertex Paul Erdős is known as his or her Erdős number

21

Radius and diameter

• A vertex is central in 𝐺 if its greatest distance from other vertex is
smallest, such greatest distance is the radius of 𝐺

rad G ≔ min
𝑥∈𝑉

max
𝑦∈𝑉

𝑑(𝑥, 𝑦)

• Proposition (1.4, H; Ex1.6, D) rad(𝐺) ≤ diam(𝐺) ≤ 2 rad(𝐺)

22

Radius and maximum degree control graph
size
• Proposition (1.3.3, D) A graph 𝐺 with radius at most 𝑟 and maximum

degree at most ∆≥ 3 has fewer than
∆

∆−2
(∆ − 1)𝑟.

23

Lecture 2: Girth, Connectivity
and Bipartite Graphs

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

24

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Girth

• The minimum length of a cycle in a graph 𝐺 is the girth 𝑔(𝐺) of 𝐺

• Example: The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)

• girth = 5

• smallest graph satisfies the above properties

25

Girth (cont.)

• A tree has girth ∞

• Note that a tree can be colored with two different
colors

• ⟹ A graph with large girth has small chromatic
number?

• Unfortunately NO!

• Theorem (Erdős, 1959) For all 𝑘, 𝑙, there exists a
graph 𝐺 with 𝑔 𝐺 > 𝑙 and 𝜒 𝐺 > 𝑘

26

Girth and diameter

• Proposition (1.3.2, D) Every graph 𝐺 containing a cycle satisfies
𝑔 𝐺 ≤ 2 diam 𝐺 + 1

• When the equality holds?

27

Girth and minimal degree lower bounds
graph size

• 𝑛0 𝛿, 𝑔 ≔ ൝
1 + 𝛿 σ𝑖=0

𝑟−1(𝛿 − 1)𝑖 , if 𝑔 = 2𝑟 + 1 is odd

2σ𝑖=0
𝑟−1(𝛿 − 1)𝑖 , if 𝑔 = 2𝑟 is even

• Exercise (Ex7, ch1, D) Let 𝐺 be a graph. If 𝛿(𝐺) ≥ 𝛿 ≥ 2 and 𝑔(𝐺) ≥
𝑔, then 𝐺 ≥ 𝑛0 𝛿, 𝑔

• Corollary (1.3.5, D) If 𝛿(𝐺) ≥ 3, then 𝑔 𝐺 < 2 log2|𝐺|

28

Triangle-free upper bounds # of edges

• Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an 𝑛-vertex triangle-free simple graph is 𝑛2/4

• The bound is best possible

• There is a triangle-free graph with 𝑛2/4 edges: 𝐾 𝑛/2 , 𝑛/2

• Extremal problems

29

Connected, connected component

• A graph 𝐺 is connected if 𝐺 ≠ ∅ and any two of its vertices are linked
by a path

• A maximal connected subgraph of 𝐺 is a (connected) component

30

Quiz

• Problem (1B, L) Suppose 𝐺 is a graph on 10 vertices that is not
connected. Prove that 𝐺 has at most 36 edges. Can equality occur?

• More general (Ex9, S1.1.2, H) Let 𝐺 be a graph of order 𝑛 that is not
connected. What is the maximum size of 𝐺?

31

Connected vs. minimal degree

• Proposition (1.3.15, W) If 𝛿(𝐺) ≥
𝑛−1

2
, then 𝐺 is connected

• (Ex16, S1.1.2, H; 1.3.16, W)

If 𝛿(𝐺) ≥
𝑛−2

2
, then 𝐺 need not be connected

• Extremal problems

• “best possible” “sharp”

32

Add/delete an edge

• Components are pairwise disjoint; no two share a vertex

• Adding an edge decreases the number of components by 0 or 1
• ⇒ deleting an edge increases the number of components by 0 or 1

• Proposition (1.2.11, W)
Every graph with 𝑛 vertices and 𝑘 edges has at least 𝑛 − 𝑘
components

• An edge 𝑒 is called a bridge if the graph 𝐺 − 𝑒 has more components

• Proposition (1.2.14, W)
An edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• Or equivalently, an edge 𝑒 is not a bridge ⟺𝑒 lies on a cycle of 𝐺

33

Cut vertex and connectivity

• A node 𝑣 is a cut vertex if the graph 𝐺 − 𝑣 has more
components

• A proper subset S of vertices is a vertex cut set if the
graph 𝐺 − 𝑆 is disconnected, or trivial (a graph of
order 0 or 1)

• The connectivity, 𝜅(𝐺), is the minimum size of a cut
set of 𝐺
• The graph is 𝑘-connected for any 𝑘 ≤ 𝜅(𝐺)

34

Connectivity properties

• 𝜅 𝐾𝑛 = 𝑛 − 1

• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2

35

Connectivity properties (cont.)

• 𝜅 𝐺 ≥ 2⟺ 𝐺 is connected and has no cut vertices

• A vertex lies on a cycle ⇏ it is not a cut vertex
• ⇒ (Ex13, S1.1.2, H) Every vertex of a connected graph 𝐺 lies on at least one

cycle ⇏ 𝜅 𝐺 ≥ 2

• (Ex14, S1.1.2, H) 𝜅 𝐺 ≥ 2 implies 𝐺 has at least one cycle

• (Ex12, S1.1.2, H) 𝐺 has a cut vertex vs. 𝐺 has a bridge

36

Connectivity and minimal degree

• (Ex15, S1.1.2, H)

• 𝜅 𝐺 ≤ 𝛿(𝐺)

• If 𝛿 𝐺 ≥ 𝑛 − 2, then 𝜅 𝐺 = 𝛿(𝐺)

37

Edge-connectivity

• A proper subset 𝐹 ⊂ 𝐸 is edge cut set if the graph 𝐺 − 𝐹 is
disconnected

• The edge-connectivity 𝜆(𝐺) is the minimal size of edge cut set

• 𝜆 𝐺 = 0 if 𝐺 is disconnected

• Proposition (1.4.2, D) If 𝐺 is non-trivial, then 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)

38

Large average (minimal) degree implies local
large connectivity
• Theorem (1.4.3, D, Mader 1972) Every graph 𝐺 with 𝑑(𝐺) ≥ 4𝑘 has a

(𝑘 + 1)-connected subgraph 𝐻 such that 𝑑 𝐻 > 𝑑 𝐺 − 2𝑘.

39

Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⟺ it contains no odd cycle

40

Complete graph is a union of bipartite graphs

• The union of graphs 𝐺1, … , 𝐺𝑘, written 𝐺1 ∪⋯∪ 𝐺𝑘, is the graph with
vertex set ڂ𝑖=1

𝑘 𝑉(𝐺𝑖) and edge set ڂ𝑖=1
𝑘 𝐸(𝐺𝑖)

• Consider an air traffic system with 𝑘 airlines
• Each pair of cities has direct service from at least one airline
• No airline can schedule a cycle through an odd number of cities
• Then, what is the maximum number of cities in the system?

• Theorem (1.2.23, W) The complete graph 𝐾𝑛 can be expressed as the
union of 𝑘 bipartite graphs ⟺𝑛 ≤ 2𝑘

41

Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph 𝐺 has a bipartite subgraph
with at least 𝐸 /2 edges

42

Lecture 3: Trees
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

43

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Trees

• A tree is a connected graph 𝑇 with no cycles

44

Properties

• Recall that

• ⇒(Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that

• ⇒ Every edge in a tree is a bridge

• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒
is disconnected for every edge 𝑒 ∈ 𝑇

45

Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges

⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges

46

Leaves of tree

• A vertex of degree 1 in a tree is called a leaf

• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then
𝑇 has at least two leaves

• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least
∆ leaves

• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of
leaves is

2 + ෍

𝑣:𝑑(𝑣)≥3

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

• Every leaf node is not a cut vertex
47

The center of a tree is a vertex or ‘an edge’

• Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices

48

Any tree can be embedded in a ‘dense’ graph

• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺
be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph

49

Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a
tree that contains every vertex of 𝐺

• Example: A telecommunications company tries to lay cable in a new
neighbourhood

• Proposition (2.1.5c, W) Every connected graph contains a spanning
tree

50

Minimal spanning tree - Kruskal’s Algorithm

• Given: A connected, weighted graph 𝐺

1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any
of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of 𝐺, then stop. If
not, repeat step 2

51

Example

52

Theoretical guarantee of Kruskal’s algorithm

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight

53

Cayley’s tree formula

• Theorem (1.18, H; 2.2.3, W). There
are 𝑛𝑛−2 distinct labeled trees of
order 𝑛

54

Example

55

of trees with fixed degree sequence

• Corollary (2.2.4, W) Given positive integers 𝑑1, … , 𝑑𝑛 summing to

2𝑛 − 2, there are exactly
𝑛−2 !

ς 𝑑𝑖−1 !
trees with vertex set 𝑛 such that

vertex 𝑖 has degree 𝑑𝑖 for each 𝑖

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees
3,1,2,1,3,1,1

56

Matrix tree theorem - cofactor

• For an 𝑛 × 𝑛 matrix 𝐴, the 𝑖, 𝑗 cofactor of
𝐴 is defined to be

−1 𝑖+𝑗 det 𝑀𝑖𝑗

where 𝑀𝑖𝑗 represents the 𝑛 − 1 ×
𝑛 − 1 matrix formed by deleting row 𝑖

and column 𝑗 from 𝐴

57

Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 𝐺 is a connected labeled
graph with adjacency matrix 𝐴 and degree matrix 𝐷, then the number
of unique spanning trees of 𝐺 is equal to the value of any cofactor of
the matrix 𝐷 − 𝐴

• If the row sums and column sums of a matrix are all 0, then the
cofactors all have the same value

• Exercise Read the proof

• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove
Cayley’s theorem

58

Example

• Exercise (Ex6, S1.3.4, H) Let 𝑒 be an edge of 𝐾𝑛. Use Cayley’s Theorem
to prove that 𝐾𝑛 − 𝑒 has (𝑛 − 2)𝑛𝑛−3 spanning trees

59

Wiener index

• In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

• Wiener index 𝐷 𝐺 = σ𝑢,𝑣∈𝑉(𝐺)𝑑𝐺(𝑢, 𝑣)

• Theorem (2.1.14, W) Among trees with 𝑛 vertices, the Wiener index
𝐷(𝑇) is minimized by stars and maximized by paths, both uniquely

• Over all connected 𝑛-vertex graphs, 𝐷 𝐺 is minimized by 𝐾𝑛 and
maximized (2.1.16, W) by paths
• (Lemma 2.1.15, W) If 𝐻 is a subgraph of 𝐺, then 𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣)

60

Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most
two children

• Given large computer files and limited storage, we want to encode
characters as binary lists to minimize (expected) total length

• Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011

61

Huffman’s Algorithm (2.3.13, W)

• Input: Weights (frequencies or probabilities) 𝑝1, … , 𝑝𝑛
• Output: Prefix-free code (equivalently, a binary tree)

• Idea: Infrequent items should have longer codes; put infrequent items
deeper by combining them into parent nodes.

• Recursion: replace the two least likely items with probabilities 𝑝, 𝑝′
with a single item of weight 𝑝 + 𝑝′

62

Example (2.3.14, W)

63

a 5

b 1

c 1

d 7

e 8

f 2

g 3

h 6

a 5 100

b 1 00000

c 1 00001

d 7 01

e 8 11

f 2 0001

g 3 001

h 6 101
The average length is

5×3+5+5+7×2+⋯

33
=

30

11
< 3

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution 𝑝𝑖 on 𝑛 items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length

64

Huffman coding and entropy

• The entropy of a discrete probability distribution 𝑝𝑖 is that

𝐻 𝑝 = −෍

𝑖

𝑝𝑖 log2 𝑝𝑖

• Exercise (Ex2.3.31, W) 𝐻(𝑝) ≤ average length of Huffman coding ≤
𝐻(𝑝) + 1

• Exercise (Ex2.3.30, W) When each 𝑝𝑖 is a power of ½, average length
of Huffman coding is 𝐻(𝑝)

65

Lecture 4: Circuits
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

66

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Eulerian circuit

• A closed walk through a graph using every edge once is called an
Eulerian circuit

• A graph that has such a walk is called an Eulerian graph

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one
nontrivial component and its vertices all have even degree

• (possibly with multiple edges)

• Proof “⟹” That 𝐺 must be connected is obvious.
Since the path enters a vertex through some edge and

leaves by another edge, it is clear that all degrees must be even

67

Key lemma

• Lemma (1.2.25, W) If every vertex of a graph 𝐺 has degree at least 2,
then 𝐺 contains a cycle.

68

Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex 𝑟 and start with the trivial partial circuit (𝑟)

2. Given a partial circuit (𝑥0, 𝑒1, 𝑥1, … , 𝑥𝑡−1, 𝑒𝑡 , 𝑥𝑡 = 𝑥0) that traverses not
all edges of 𝐺, remove these edges from 𝐺

3. Let 𝑖 be the least integer for which 𝑥𝑖 is incident with one of the
remaining edges

4. Form a greedy partial circuit among the remaining edges of the form
(𝑥𝑖 = 𝑦0, 𝑒1

′ , 𝑦1, … , 𝑦𝑠−1, 𝑒𝑠
′ , 𝑦𝑠 = 𝑥𝑖)

5. Expand the original circuit by setting
(𝑥0, 𝑒1, … , 𝑒𝑖 , 𝑥𝑖 = 𝑦0, 𝑒1

′ , 𝑦1, … , 𝑦𝑠−1, 𝑒𝑠
′ , 𝑦𝑠 = 𝑥𝑖 , 𝑒𝑖+1, … , 𝑒𝑡 , 𝑥𝑡 = 𝑥0)

6. Repeat step 2-5

69

Example

1. Start with the trivial circuit (1)

2. Greedy algorithm yields the partial circuit
(1,2,4,3,1)

3. Remove these edges

4. The first vertex incident with remaining edges is 2

5. Greedy algorithms yields (2,5,8,2)

6. Expanding (1,2,5,8,2,4,3,1)

7. Remove these edges

70

Example (cont.)

6. Expanding (1,2,5,8,2,4,3,1)

7. Remove these edges

8. First vertex incident with remaining edges is 4

9. Greedy algorithm yields 4,6,7,4,9,6,10,4

10. Expanding 1,2,5,8,2,4,6,7,4,9,6,10,4,3,1

11. Remove these edges

12. First vertex incident with remaining edges is 7

13. Greedy algorithm yields 7,9,11,7

14. Expanding 1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1
71

Eulerian circuit

•

72

Other properties

• Proposition (1.2.27, W) Every even graph decomposes into cycles

• The necessary and sufficient condition for a directed Eulerian circuit is
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’

73

TONCAS

• TONCAS: The obvious necessary condition is also sufficient

•

• Proposition (1.3.28, W) The nonnegative integers 𝑑1, … , 𝑑𝑛 are the
vertex degrees of some graph ⟺σ𝑖=1

𝑛 𝑑𝑖 is even

• (Possibly with loops)

• Otherwise (2,0,0) is not realizable

•

74

Hamiltonian path/circuits

• A path 𝑃 is Hamiltonian if 𝑉 𝑃 = 𝑉(𝐺)
• Any graph contains a Hamiltonian path is called traceable

• A cycle 𝐶 is called Hamiltonian if it spans all vertices of 𝐺
• A graph is called Hamiltonian if it contains a Hamiltonian circuit

• In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of
the dodecahedron (正十二面体)

75

Degree parity is not a criterion

• Hamiltonian graphs
• all even degrees 𝐶10
• all odd degrees 𝐾10
• a mixture 𝐺1

• non-Hamiltonian graphs
• all even 𝐺2
• all odd 𝐾5,7
• mixed 𝑃9

76

Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete

77

P, NP, NPC, NP-hard

• P The general class of questions for which some
algorithm can provide an answer in polynomial
time

• NP (nondeterministic polynomial time) The class
of questions for which an answer can be verified in
polynomial time

• NP-Complete
1. c is in NP
2. Every problem in NP is reducible to c in polynomial

time

• NP-hard
• c is in NP
• Every problem in NP is reducible to c in polynomial time

78

Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let 𝐺 be a graph of order 𝑛 ≥ 3. If 𝛿(𝐺) ≥ 𝑛/2,
then 𝐺 is Hamiltonian

• The bound is tight
(Ex12b, S1.4.3, H) 𝐺 = 𝐾𝑟,𝑟+1 is not Hamiltonian
Exercise The condition when 𝐾𝑟,𝑠 is Hamiltonian

• The condition is not necessary
• 𝐶𝑛 is Hamiltonian but with small minimum (and even maximum) degree

79

Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let 𝐺 be a graph of
order 𝑛 ≥ 3. If deg 𝑥 + deg(𝑦) ≥ 𝑛 for all pairs of nonadjacent
vertices 𝑥, 𝑦, then 𝐺 is Hamiltonian

80

Independence number & Hamiltonian

• A set of vertices in a graph is called independent if
they are pairwise nonadjacent

• The independence number of a graph 𝐺, denoted as
𝛼(𝐺), is the largest size of an independent set

• Example: 𝛼 𝐺1 = 2, 𝛼 𝐺2 = 3

• Theorem (1.24, H) Let 𝐺 be a connected graph of
order 𝑛 ≥ 3. If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 is Hamiltonian

81

Independence number & Hamiltonian 2

• The result is tight: 𝜅(𝐺) ≥ 𝛼(𝐺)−1 is not enough
• 𝐾𝑟,𝑟+1: 𝜅 = r, 𝛼 = 𝑟 + 1

• Exercise (Ex4, S1.4.3, H) Peterson graph: 𝜅 = 3, 𝛼 = 4

82

Pattern-free & Hamiltonian

• 𝐺 is 𝐻-free if 𝐺 doesn’t contain a copy of 𝐻 as induced subgraph

• Theorem (1.25, H) If 𝐺 is 2-connected and 𝐾1,3, 𝑍1 -free, then 𝐺 is
Hamiltonian

• The condition 2-connectivity is necessary

• (Ex2, S1.4.3, H) If 𝐺 is Hamiltonian, then 𝐺 is 2-connected

83

Lecture 5: Matchings
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

84

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Motivating example

85

Definitions

• A matching is a set of independent edges, in which no pair of edges
shares a vertex

• The vertices incident to the edges of a matching 𝑀 are 𝑀-saturated
(饱和的); the others are 𝑀-unsaturated

• A perfect matching in a graph is a matching that saturates every
vertex

• Example (3.1.2, W) The number of perfect matchings in 𝐾𝑛,𝑛 is 𝑛!

• Example (3.1.3, W) The number of perfect matchings in 𝐾2𝑛 is
𝑓𝑛 = 2𝑛 − 1 2𝑛 − 3 ⋯1 = 2𝑛 − 1 ‼

86

Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

• A maximum matching is a matching of maximum size among all
matchings in the graph

• Example: 𝑃3, 𝑃5

• Every maximum matching is maximal, but not every maximal
matching is a maximum matching

87

Symmetric difference of matchings

• The symmetric difference of 𝑀,𝑀′ is 𝑀∆𝑀′ = (𝑀 −𝑀′) ∪ (𝑀′ −𝑀)

• Lemma (3.1.9, W) Every component of the symmetric difference of
two matchings is a path or an even cycle

88

Maximum matching and augmenting path

• Given a matching 𝑀, an 𝑀-alternating path is a path
that alternates between edges in 𝑀 and edges not in
𝑀

• An 𝑀-alternating path whose endpoints are 𝑀-
unsaturated is an 𝑀-augmenting path

• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching
𝑀 in a graph 𝐺 is a maximum matching in 𝐺 ⇔ 𝐺 has
no 𝑀-augmenting path

89

Hall’s theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 𝐺 be a bipartite
graph with partition 𝑋, 𝑌.
𝐺 contains a matching of 𝑋⇔ 𝑁(𝑆) ≥ 𝑆 for all 𝑆 ⊆ 𝑋

• Exercise. Read the other two proofs in Diestel.

• Corollary (3.1.13, W; 2.1.3, D) Every 𝑘-regular (𝑘 > 0) bipartite graph
has a perfect matching

90

General regular graph

• Corollary (2.1.5, D) Every regular graph of positive even degree has a
2-factor
• A 𝑘-regular spanning subgraph is called a 𝑘-factor

• A perfect matching is a 1-factor

91

• Given some family of sets 𝑋, a system of
distinct representatives for the sets in 𝑋
is a ‘representative’ collection of distinct
elements from the sets of 𝑋

• Theorem(1.52, H) Let 𝑆1, 𝑆2, … , 𝑆𝑘 be a collection of finite, nonempty
sets. This collection has SDR ⇔ for every 𝑡 ∈ [𝑘], the union of any 𝑡 of
these sets contains at least 𝑡 elements

Application to SDR

92

König Theorem
Augmenting Path Algorithm

93

Vertex cover

• A set 𝑈 ⊆ 𝑉 is a (vertex) cover of 𝐸 if every edge in 𝐺 is incident with
a vertex in 𝑈

• Example:
• Art museum is a graph with hallways are edges and corners are nodes

• A security camera at the corner will guard the paintings on the hallways

• The minimum set to place the cameras?

94

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
Let 𝐺 be a bipartite graph. The maximum size of a matching in 𝐺 is
equal to the minimum size of a vertex cover of its edges

95

Augmenting path algorithm (3.2.1, W)

• Input: 𝐺 is Bipartite with 𝑋, 𝑌, a matching 𝑀 in 𝐺
𝑈 = 𝑀−unsaturated vertices in 𝑋

• Idea: Explore 𝑀-alternating paths from 𝑈
letting 𝑆 ⊆ 𝑋 and 𝑇 ⊆ 𝑌 be the sets of vertices reached

• Initialization: 𝑆 = 𝑈, 𝑇 = ∅ and all vertices in 𝑆 are unmarked

• Iteration:
• If S has no unmarked vertex, stop and report 𝑇 ∪ (𝑋 − 𝑆) as a minimum cover and 𝑀

as a maximum matching
• Otherwise, select an unmarked 𝑥 ∈ 𝑆 to explore

• Consider each 𝑦 ∈ 𝑁(𝑥) such that 𝑥𝑦 ∉ 𝑀
• If 𝑦 is unsaturated, terminate and report an 𝑀-augmenting path from 𝑈 to 𝑦
• Otherwise, 𝑦𝑤 ∈ 𝑀 for some 𝑤

• include 𝑦 in 𝑇 (reached from 𝑥) and include 𝑤 in 𝑆 (reached from 𝑦)

• After exploring all such edges incident to 𝑥, mark 𝑥 and iterate.
96

Example

97

Red: A random matching

Theoretical guarantee for Augmenting path
algorithm
• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path

Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size

98

Weighted Bipartite Matching
Hungarian Algorithm

99

Weighted bipartite matching

• The maximum weighted matching problem is to seek a perfect matching 𝑀
to maximize the total weight 𝑤(𝑀)

• Bipartite graph
• W.l.o.g. Assume the graph is 𝐾𝑛,𝑛 with 𝑤𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑛
• Optimization:

max𝑤(𝑀𝑎)=෍

𝑖,𝑗

𝑎𝑖,𝑗𝑤𝑖,𝑗

𝑠. 𝑡. 𝑎𝑖,1 +⋯+ 𝑎𝑖,𝑛 ≤ 1 for any 𝑖
𝑎1,𝑗 +⋯+ 𝑎𝑛,𝑗 ≤ 1 for any 𝑗
𝑎𝑖,𝑗 ∈ 0,1

• Integer programming
• General IP problems are NP-Complete

100

(Weighted) cover

• A (weighted) cover is a choice of labels 𝑢1, … , 𝑢𝑛 and 𝑣1, … , 𝑣𝑛 such
that 𝑢𝑖 + 𝑣𝑗 ≥ 𝑤𝑖,𝑗 for all 𝑖, 𝑗
• The cost 𝑐(𝑢, 𝑣) of a cover (𝑢, 𝑣) is σ𝑖 𝑢𝑖 + σ𝑗 𝑣𝑗
• The minimum weighted cover problem is that of finding a cover of minimum

cost

• Optimization problem

min 𝑐 𝑢, 𝑣 =෍

𝑖

𝑢𝑖 +෍

𝑗

𝑣𝑗

𝑠. 𝑡. 𝑢𝑖 + 𝑣𝑗 ≥ 𝑤𝑖,𝑗 for any 𝑖, 𝑗
𝑢𝑖 , 𝑣𝑗 ≥ 0 for any 𝑖, 𝑗

101

Duality

• Weak duality theorem
• For each feasible solution 𝑎 and 𝑢, 𝑣

෍

𝑖,𝑗

𝑎𝑖,𝑗𝑤𝑖,𝑗 ≤෍

𝑖

𝑢𝑖 +෍

𝑗

𝑣𝑗

thus maxσ𝑖,𝑗 𝑎𝑖,𝑗𝑤𝑖,𝑗 ≤ minσ𝑖 𝑢𝑖 + σ𝑗 𝑣𝑗

102

(IP)

max෍

𝑖,𝑗

𝑎𝑖,𝑗𝑤𝑖,𝑗

𝑠. 𝑡. 𝑎𝑖,1 +⋯+ 𝑎𝑖,𝑛 ≤ 1 for any 𝑖

𝑎1,𝑗 +⋯+ 𝑎𝑛,𝑗 ≤ 1 for any 𝑗

𝑎𝑖,𝑗 ∈ 0,1

(Linear programming)

max෍

𝑖,𝑗

𝑎𝑖,𝑗𝑤𝑖,𝑗

𝑠. 𝑡. 𝑎𝑖,1 +⋯+ 𝑎𝑖,𝑛 ≤ 1 for any 𝑖

𝑎1,𝑗 +⋯+ 𝑎𝑛,𝑗 ≤ 1 for any 𝑗

𝑎𝑖,𝑗 ≥ 0

(Dual)

min෍

𝑖

𝑢𝑖 +෍

𝑗

𝑣𝑗

𝑠. 𝑡. 𝑢𝑖 + 𝑣𝑗 ≥ 𝑤𝑖,𝑗 for any 𝑖, 𝑗

𝑢𝑖 , 𝑣𝑗 ≥ 0

Duality (cont.)

• Strong duality theorem
• If one of the two problems has an optimal solution, so does the other one and

that the bounds given by the weak duality theorem are tight

max෍

𝑖,𝑗

𝑎𝑖,𝑗𝑤𝑖,𝑗 = min෍

𝑖

𝑢𝑖 +෍

𝑗

𝑣𝑗

• Lemma (3.2.7, W) For a perfect matching 𝑀 and cover (𝑢, 𝑣) in a
weighted bipartite graph 𝐺, 𝑐 𝑢, 𝑣 ≥ 𝑤 𝑀 .
𝑐(𝑢, 𝑣) = 𝑤(𝑀)⇔ 𝑀 consists of edges 𝑥𝑖𝑦𝑗 such that 𝑢𝑖 + 𝑣𝑗 = 𝑤𝑖,𝑗

In this case, 𝑀 and (𝑢, 𝑣) are optimal.

103

Equality subgraph

• The equality subgraph 𝐺𝑢,𝑣 for a cover (𝑢, 𝑣) is the spanning subgraph
of 𝐾𝑛,𝑛 having the edges 𝑥𝑖𝑦𝑗 such that 𝑢𝑖 + 𝑣𝑗 = 𝑤𝑖,𝑗

• So if 𝑐(𝑢, 𝑣) = 𝑤(𝑀) for some perfect matching 𝑀, then 𝑀 is composed of
edges in 𝐺𝑢,𝑣

• And if 𝐺𝑢,𝑣 contains a perfect matching 𝑀, then (𝑢, 𝑣) and 𝑀 (whose weights
are 𝑢𝑖 + 𝑣𝑗) are both optimal

104

Hungarian algorithm

• Input: Weighted 𝐾𝑛,𝑛 = 𝐵(𝑋, 𝑌)

• Idea: Iteratively adjusting the cover (𝑢, 𝑣) until the equality subgraph
𝐺𝑢,𝑣 has a perfect matching

• Initialization: Let (𝑢, 𝑣) be a cover, such as 𝑢𝑖 = max
𝑗

𝑤𝑖,𝑗, 𝑣𝑗 = 0

105

(Dual)

min෍

𝑖

𝑢𝑖 +෍

𝑗

𝑣𝑗

𝑠. 𝑡. 𝑢𝑖 + 𝑣𝑗 ≥ 𝑤𝑖,𝑗 for any 𝑖, 𝑗

𝑢𝑖 , 𝑣𝑗 ≥ 0

Hungarian algorithm (cont.)

• Iteration: Find a maximum matching 𝑀 in 𝐺𝑢,𝑣
• If 𝑀 is a perfect matching, stop and report 𝑀 as a maximum weight matching

• Otherwise, let 𝑄 be a vertex cover of size 𝑀 in 𝐺𝑢,𝑣
• Let 𝑅 = 𝑋 ∩ 𝑄, 𝑇 = 𝑌 ∩ 𝑄

𝜖 = min 𝑢𝑖 + 𝑣𝑗 − 𝑤𝑖,𝑗: 𝑥𝑖 ∈ 𝑋 − 𝑅, 𝑦𝑗 ∈ 𝑌 − 𝑇

• Decrease 𝑢𝑖 by 𝜖 for 𝑥𝑖 ∈ 𝑋 − 𝑅 and increase 𝑣𝑗 by 𝜖 for 𝑦𝑗 ∈ 𝑇

• Form the new equality subgraph and repeat

106

Example

107

Example 2: Excess matrix

108

Optimal value is the same
But the solution is not unique

Theoretical guarantee for Hungarian
algorithm
• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum

weight matching and a minimum cost cover

109

Example 3

110

Back to (unweighted) bipartite graph

• The weights are binary 0,1

• Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

• The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

• So the solution is a minimum vertex cover

111

Stable Matchings

112

Stable matching

• A family ≤𝑣 𝑣∈𝑉 of linear orderings ≤𝑣 on 𝐸(𝑣) is a set of
preferences for 𝐺

• A matching 𝑀 in 𝐺 is stable if for any edge 𝑒 ∈ 𝐸 ∖ 𝑀, there exists an
edge 𝑓 ∈ 𝑀 such that 𝑒 and 𝑓 have a common vertex 𝑣 with 𝑒 <𝑣 𝑓
• Unstable: There exists 𝑥𝑦 ∈ 𝐸 ∖ 𝑀 but 𝑥𝑦′, 𝑥′𝑦 ∈ 𝑀 with 𝑥𝑦′ <𝑥 𝑥𝑦
𝑥′𝑦 <𝑦 𝑥𝑦

113

Gale-Shapley Proposal Algorithm

• Input: Preference rankings by each of 𝑛 men and 𝑛 women

• Idea: Produce a stable matching using proposals by maintaining
information about who has proposed to whom and who has rejected
whom

• Iteration: Each man proposes to the highest woman on his preference
list who has not previously rejected him
• If each woman receives exactly one proposal, stop and use the resulting

matching
• Otherwise, every woman receiving more than one proposal rejects all of them

except the one that is highest on her preference list
• Every woman receiving a proposal says “maybe” to the most attractive

proposal received

114

Example

115

Example (gif)

116

Theoretical guarantee for the Proposal
Algorithm
• Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm

produces a stable matching

• Who proposes matters (jobs/candidates)

• Exercise Among all stable matchings, every man is happiest in the one
produced by the male-proposal algorithm and every woman is
happiest under the female-proposal algorithm

117

Matchings in General Graphs

118

Perfect matchings

• 𝐾2𝑛, 𝐶2𝑛, 𝑃2𝑛 have perfect matchings

•

• Theorem(1.58, H) If 𝐺 is a graph of order 2𝑛 such that 𝛿(𝐺) ≥ 𝑛, then
𝐺 has a perfect matching

119

Tutte’s Theorem (TONCAS)

• Let 𝑞(𝐺) be the number of connected components with odd order

• Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let 𝐺 be a graph of order 𝑛 ≥ 2. 𝐺 has a perfect matching ⇔𝑞(𝐺 −
𝑆) ≤ 𝑆 for all 𝑆 ⊆ 𝑉

120

Petersen’s Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching

121

Find augmenting paths in general graphs

• Different from bipartite graphs, a vertex can belong to both S and T

• Example: How to explore from 𝑀-unsaturated point 𝑢

• Flower/stem/blossom

122

Lifting

123

Edmonds’ blossom algorithm (3.3.17, W)

• Input: A graph 𝐺, a matching 𝑀 in 𝐺, an 𝑀-unsaturated vertex 𝑢

• Idea: Explore M-alternating paths from 𝑢, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found
• Maintain sets 𝑆 and 𝑇 analogous to those in Augmenting Path Algorithm, with 𝑆 consisting of 𝑢

and the vertices reached along saturated edges
• Reaching an unsaturated vertex yields an augmentation.

• Initialization: 𝑆 = {𝑢} and 𝑇 = ∅

• Iteration: If 𝑆 has no unmarked vertex, stop; there is no 𝑀-augmenting path from 𝑢
• Otherwise, select an unmarked 𝑣 ∈ 𝑆. To explore from 𝑣, successively consider each 𝑦 ∈ 𝑁(𝑣) s.t.
𝑦 ∉ 𝑇

• If 𝑦 is unsaturated by 𝑀, then trace back from 𝑦 (expanding blossoms as needed) to report an 𝑀-augmenting
𝑢, 𝑦-path

• If 𝑦 ∈ 𝑆, then a blossom has been found. Suspend the exploration of 𝑣 and contract the blossom, replacing its
vertices in 𝑆 and 𝑇 by a single new vertex in 𝑆. Continue the search from this vertex in the smaller graph.

• Otherwise, 𝑦 is matched to some 𝑤 by 𝑀. Include 𝑦 in 𝑇 (reached from 𝑣), and include 𝑤 in 𝑆 (reached from 𝑦)

• After exploring all such neighbors of 𝑣, mark 𝑣 and iterate

124

Illustration

125

Example

126

Example 2

127

Example 2 (cont.)

128

Lecture 6: More on
Connectivity

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

129

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Vertex cut set and connectivity

• A proper subset 𝑆 of vertices is a vertex cut set if the graph 𝐺 − 𝑆 is
disconnected

• The connectivity, 𝜅(𝐺), is the minimum size of a vertex set 𝑆 of 𝐺 such that
𝐺 − 𝑆 is disconnected or has only one vertex
• The graph is 𝑘-connected if 𝑘 ≤ 𝜅(𝐺)

• 𝜅 𝐾𝑛 : = 𝑛 − 1

• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2

• For convention, 𝜅 𝐾1 = 0

• Example (4.1.3, W) For 𝑘-dimensional cube 𝑄𝑘 = 0,1 𝑘, 𝜅 𝑄𝑘 = 𝑘
130

Edge-connectivity

• A disconnecting set of edges is a set 𝐹 ⊆ 𝐸(𝐺) such that 𝐺 − 𝐹 has
more than one component
• A graph is 𝑘-edge-connected if every disconnecting set has at least 𝑘 edges

• The edge-connectivity of 𝐺, written 𝜆(𝐺), is the minimum size of a
disconnecting set

• Given 𝑆, 𝑇 ⊆ 𝑉(𝐺), we write [𝑆, 𝑇] for the set of edges having one
endpoint in 𝑆 and the other in 𝑇
• An edge cut is an edge set of the form [𝑆, 𝑆𝑐] where 𝑆 is a nonempty proper

subset of 𝑉(𝐺)

• Every edge cut is a disconnecting set, but not vice versa

• Remark (4.1.8, W) Every minimal disconnecting set of edges is an
edge cut 131

Connectivity and edge-connectivity

•

•

that is 𝜅 𝐺 = 𝜆 𝐺 = 𝛿(𝐺)

• Theorem (4.1.11, W) If 𝐺 is a 3-regular graph, then 𝜅 𝐺 = 𝜆(𝐺)

132

Properties of edge cut

• When 𝜆 𝐺 < 𝛿(𝐺), a minimum edge cut cannot isolate a vertex

• Similarly for (any) edge cut

• Proposition (4.1.12, W) If 𝑆 is a set of vertices in a graph 𝐺, then

𝑆, 𝑆𝑐 =෍
𝑣∈𝑆

𝑑(𝑣) − 2𝑒(𝐺[𝑆])

• Corollary (4.1.13, W) If 𝐺 is a simple graph and 𝑆, 𝑆𝑐 < 𝛿(𝐺), then
𝑆 > 𝛿(𝐺)
• 𝑆 must be much larger than a single vertex

133

Blocks

• A block of a graph 𝐺 is a maximal connected subgraph of 𝐺 that has
no cut-vertex. If 𝐺 itself is connected and has no cut-vertex, then 𝐺 is
a block

• Example

• An edge of a cycle cannot itself be a block
• An edge is block ⟺ it is a bridge

• The blocks of a tree are its edges

• If a block has more than two vertices, then it is 2-connected
• The blocks of a loopless graph are its isolated vertices, bridges, and its

maximal 2-connected subgraphs

134

Intersection of two blocks

• Proposition (4.1.19, W) Two blocks in a graph share at most one
vertex
• When two blocks share a vertex, it must be a cut-vertex

• Every edge is a subgraph with no cut-vertex and hence is in a block.
Thus blocks in a graph decompose the edge set

135

Block-cutpoint graph

• The block-cutpoint graph of a graph 𝐺 is a bipartite graph 𝐻 in which
one partite set consists of the cut-vertices of 𝐺, and the other has a
vertex 𝑏𝑖 for each block 𝐵𝑖 of 𝐺. We include 𝑣𝑏𝑖 as an edge of 𝐻 ⟺
𝑣 ∈ 𝐵𝑖

• (Ex34, S4.1, W) When 𝐺 is connected, its block-cutpoint graph is a
tree

136

Depth-first search (DFS)

• Depth-first search

• Lemma (4.1.22, W) If 𝑇 is a spanning tree of a connected graph grown
by DFS from 𝑢, then every edge of 𝐺 not in 𝑇 consists of two vertices
𝑣, 𝑤 such that 𝑣 lies on the 𝑢,𝑤-path in 𝑇

137

Finding blocks by DFS

• Input: A connected graph 𝐺

• Idea: Build a DFS tree 𝑇 of 𝐺, discarding portions of 𝑇 as blocks are
identified. Maintain one vertex called ACTIVE

• Initialization: Pick a root 𝑥 ∈ 𝑉(𝐻); make 𝑥 ACTIVE; set 𝑇 = {𝑥}

• Iteration: Let 𝑣 denote the current active vertex
• If 𝑣 has an unexplored incident edge 𝑣𝑤, then

• If 𝑤 ∉ 𝑉(𝑇), then add 𝑣𝑤 to 𝑇, mark 𝑣𝑤 explored, make 𝑤 ACTIVE
• If 𝑤 ∈ 𝑉(𝑇), then 𝑤 is an ancestor of 𝑣; mark 𝑣𝑤 explored

• If 𝑣 has no more unexplored incident edges, then
• If 𝑣 ≠ 𝑥 and 𝑤 is a parent of 𝑣, make 𝑤 ACTIVE. If no vertex in the current subtree 𝑇′

rooted at 𝑣 has an explored edge to an ancestor above 𝑤, then 𝑉(𝑇’) ∪ 𝑤 is the vertex
set of a block; record this information and delete 𝑉(𝑇′)

• if 𝑣 = 𝑥, terminate
138

Example

139

Strong orientation

• Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong
orientation, i.e. an orientation that is a strongly connected digraph
⟺ it is 2-edge-connected
• A directed graph is strongly connected if for every pair of vertices (𝑣, 𝑤),

there is a directed path from 𝑣 to 𝑤

• Proposition (2.4, L) Let 𝑥𝑦 ∈ 𝑇 which is not a bridge in 𝐺 and 𝑥 is a parent of
𝑦. Then there exists an edge in 𝐺 but not in 𝑇 joining some descendant 𝑎 of 𝑦
and some ancestor 𝑏 of 𝑥

140

