LiASE R
298 - TR Y R
: HHEAER O
| John Hopcroft Center for Computer Science |

YHELAAE

SHANGHALI JIAO TONG UNIVERSITY

CS 445: Combinatorics

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Basics

Graphs

We mainly focus on

* Definition A graph G is a pair (V, E) Simple graph:

No loops, no multi-edges

e I/: set of vertices
» F: set of edges
* ¢ € E corresponds to a pair of endpoints x,y € V

edge ends
a X, 2
b Y, W
c X, 2
d Z, W
€ <, W (i) graph (ii) graph with loop (iii) digraph (iv) multiple edges
f T,y
g 2w Figure 1.2

Figure 1.1

Graphs: All about adjacency

e Same graph or not

(a) (b) (c)
* Two graphs G; = (V4,E;), G = (V,, E;) are isomorphic if there is a
bijection f:V; —» 1, s.t.

e =1a,b} € Ey & f(e):=1f(a), f(b)} € E;

Example: Complete graphs

* There is an edge between every pair of vertices

Example: Regular graphs

* Every vertex has the same degree

& P>

AL SOOI
JAVAN = 9{:-:}-:;-{:'
BE{EARTSEe

PSS

x
SFNEGYS]

Example: Bipartite graphs

* The vertex set can be partitioned into two sets X and Y such that
every edge in G has one end vertex in X and the otherinY

 Complete bipartite graphs

Example (1A, L): Peterson graph

* Show that the following two graphs are same/isomorphic

Figure 1.4

Example: Peterson graph (cont.)

* Show that the following two graphs are same/isomorphic

AN

Subgraphs

* A subgraph of a graph G is a graph H such that
V(H) € V(G),E(H) € E(G)
and the ends of an edge e € E(H) are the same asits ends in G
* H is a spanning subgraph when V(H) =V (G)
* The subgraph of G induced by a subset S € V(&) is the subgraph whose
vertex set is S and whose edges are all the edges of ¢ with both endsin S

HEE

Suhgraph (in red) Induced Subgraph

10

Paths (E%4%)

* A path is a non-empty alternating sequence vye{v1€; ... €, Vg
where vertices are all distinct
* Or it can be written as vyv, ... Vg in simple graphs

e P¥: path of length k (the number of edges)

Walk (Vi)

* A walk is a non-empty alternating sequence vye vie, ... €, Vg
* The vertices not necessarily distinct
* The length = the number of edges

* Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (34)

* If P =xpx; ... X1 isa path and k = 3, then the graph C := P +
X _1Xg is called a cycle

* C¥: cycle of length k (the number of edges/vertices)

17 <

n=4 n=5

* Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

* Two vertices a # b are called adjacent if they are joined by an edge

* N(x): set of all vertices adjacent to x
* neighbors of x

* Avertex is isolated vertex if it has no neighbors

* The number of edges incident with a vertex x is called the degree of x
* Aloop contributes 2 to the degree

* A graph is finite when both E(G) and V(G) are finite sets

graph with loop

Handshaking Theorem (Euler 1736)

* Theorem A finite graph G has an even number of vertices with odd

degree
| A

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

Z W

Figure 1.2

15

Proof

* Theorem A finite graph G has an even number of vertices with

odd degree.

* Proof The degree of x is the number of times it appears
in the right column. Thus

). deg() = 2IE(G)

xeV(G)

edge ends
a X,z
b Y, W
c X,z
d Z, W
2 Z,W
f T,y
g Z, W

Figure 1.1

Degree

* Minimal degree of G: 6(G) = min{d(v): v € V}
* Maximal degree of G: A(G) = max{d(v)' v EV}

* Average degree of G: d(G) = ZvEV d(v) = 2|E|

* All measure the density’ of a graph

- d(G) = 5(G)

17

Degree (global to local)

* Proposition (1.2.2, D) Every graph G with at least one edge has a
subgraph H with

5(H) > %d(H) > %d(G)
H

* Example: |G| = 7,d(G) = —

(D (3)
e S(H) = 2,d(H) = 1—54 0‘39
O\ bz ¥

16
7

Minimal degree guarantees long paths and
cycles

* Proposition (1.3.1, D) Every graph G contains a path of length 6(G)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.

Distance and diameter

* The distance d; (x,y) in G of two vertices x, y is the length of a
shortest x~7y path

* if no such path exists, we set d(x,y) := o

* The greatest distance between any two vertices in G is the diameter
of G
diam(G) = max d(x,y)
X,YEV

Example -- Erdds number

* A well-known graph
* vertices: mathematicians of the world
* Two vertices are adjacent if and only if they have
published a joint paper
* The distance in this graph from some mathematician to the
vertex Paul Erdds is known as his or her Erdés number

21

Radius and diameter

* A vertexis central in G if its greatest distance from other vertex is
smallest, such greatest distance is the radius of G

rad(G) := min rjrllealgi d(x,y)

* Proposition (1.4, H; Ex1.6, D) rad(G) < diam(G) < 2 rad(G)

3

| #® Central Point
-

|
o 3
3 |
|
®

®
4 1
Radius =2

Diameter = 4

Radius and maximum degree control graph
Size

* Proposition (1.3.3, D) A graph G with radius at most r and maximum
degree at most A= 3 has fewer than ﬁ (A—1)".

Lecture 2: Girth, Connectivity
and Bipartite Graphs

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Girth

* The minimum length of a cycle in a graph G is the girth g(G) of G

 Example: The Peterson graph is the unique 5-cage

 cubic graph (every vertex has degree 3)
e girth=5

* smallest graph satisfies the above properties

Girth (cont.)

* A tree has girth oo

 Note that a tree can be colored with two different
colors

e = A graph with large girth has small chromatic
number?

e Unfortunately NO!

 Theorem (Erdés, 1959) For all k, [, there exists a
graph G with g(G) > land y(G) > k

26

Girth and diameter

* Proposition (1.3.2, D) Every graph G containing a cycle satisfies
g(G) < 2diam(G) + 1

* When the equality holds?

Girth and minimal degree lower bounds
graph size

1+6Y-5(6—1), ifg=2r+1lisodd
231 3(8 — 1), if g = 2r is even
* Exercise (Ex7, chl, D) Let G be agraph. If 6(G) = 6 = 2and g(G) =
g, then |G| =ny(6,9)
* Corollary (1.3.5, D) If §(G) = 3, then g(G) < 2 log,|G]|

*no(6,9) =

Triangle-free upper bounds # of edges

* Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an n-vertex triangle-free simple graph is |n? /4]

* The bound is best possible
* There is a triangle-free graph with [n? /4| edges: K|, /2| in/2]
* Extremal problems

Connected, connected component

* A graph G is connected if G # @ and any two of its vertices are linked
by a path

* A maximal connected subgraph of G is a (connected) component

1]

30

Quiz

* Problem (1B, L) Suppose G is a graph on 10 vertices that is not
connected. Prove that G has at most 36 edges. Can equality occur?

 More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not
connected. What is the maximum size of G?

Connected vs. minimal degree

* Proposition (1.3.15, W) If §(G) = nT_l, then G is connected

* (Ex16,S1.1.2, H; 1.3.16, W)
If6(G) = nT_Z, then G need not be connected

* Extremal problems

7

* “best possible” “sharp”

o0
Add/delete an edge @ I:

 Components are pairwise disjoint; no two share a vertex

* Adding an edge decreases the number of components by O or 1
* = deleting an edge increases the number of components by O or 1
* Proposition (1.2.11, W)
Every graph with n vertices and k edges has at leastn — k
components

* An edge e is called a bridge if the graph G — e has more components

* Proposition (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of ¢

33

Cut vertex and connectivity

* Anode v is a cut vertex if the graph G — v has more
components

e A proper subset S of vertices is a vertex cut set if the
graph G — S is disconnected, or trivial (a graph of
order 0 or 1)

* The connectivity, k(G), is the minimum size of a cut

set of G
* The graph is k-connected for any k < k(G)

34

Connectivity properties

k(K" =n-1
* |If G is disconnected, k(G) = 0

* = Agraphis connected © k(G) > 1

* If G is connected, non-complete graph of order n, then
1<k(G)<n-2

Connectivity properties (cont.)

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

* k(G) = 2 & G is connected and has no cut vertices

* A vertex lies on a cycle # it is not a cut vertex

= (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one
cycle # k(G) = 2

* (Ex14,S1.1.2, H) k(G) = 2 implies G has at least one cycle

e (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

Connectivity and minimal degree

e (Ex15, S1.1.2, H)

* k(G) <6(G) <
* If6(G) =n—2,thenk(G) = 6(G)

Edge-connectivity

* A proper subset I C E is edge cut set if the graph G — F is
disconnected

* The edge-connectivity A(G) is the minimal size of edge cut set
* A(G) = 0if G is disconnected
(1.4.2, D) If G is non-trivial, then k(G) < A(G) < §(G)

38

arge average (minimal) degree implies local
arge connectivity

* Theorem (1.4.3, D, Mader 1972) Every graph G with d(G) = 4k has a
(k + 1)-connected subgraph H such that d(H) > d(G) — 2k.

\x _ — "/ Britta \
. —)

—— Anrﬁe<J

[Lunch

C By

N

Bipartite graphs

* Theorem (1.2.18, W, K6&nig 1936)
A graph is bipartite < it contains no odd cycle

(1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

* The union of graphs G4, ..., G, written G; U --- U Gy, is the graph with
vertex set U¥_, V(G;) and edge set UX_, E(G;)

e Consider an air traffic system with k airlines
* Each pair of cities has direct service from at least one airline
* No airline can schedule a cycle through an odd number of cities
* Then, what is the maximum number of cities in the system?

* Theorem (1.2.23, W) The complete graph K,, can be expressed as the
union of k bipartite graphs & n < 2%

Bipartite subgraph is large

* Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph
with at least |E'| /2 edges

Lecture 3: Trees

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

43

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Trees

* A treeis a connected graph T with no cycles

Root Node
Savings = Low, Med, High?

Savings = High
Savings = Low

Savings = Medl

Good Credit Risk

Yes No Yes No

Bad Risk Good Risk Bad Risk Good Risk

Properties

(1.2.18, W, K&nig 1936)

* Recall that A graph is bipartite & it contains no odd cycle
* =(Ex 3,51.3.1, H) Atree of order n = 2 is a bipartite graph

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
° Reca ” that * Or equivalently, an edge e is not a bridge & e lies on a cycle of G

* = Every edge in a tree is a bridge

e Tisatree & T is minimally connected, i.e. T is connected butT — e
is disconnected for everyedgee € T

Equivalent definitions (Theorem 1.5.1, D)

 Tisatree of ordern
& Any two vertices of T are linked by a unique pathin T
< T is minimally connected

* i.e. T is connected but T — e is disconnected for every edgee € T

< T is maximally acyclic

* i.e. T contains no cycle but T + xy does for any non-adjacent vertices x,y €
T

& (Theorem 1.10, 1.12, H) T is connected with n — 1 edges
& (Theorem 1.13, H) T is acyclic with n — 1 edges

Leaves of tree

* A vertex of degree 1 in a tree is called a leaf

* Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order n = 2. Then
T has at least two leaves

* (Ex3,S1.3.2, H) Let T be a tree with max degree A. Then T has at least
A leaves

* (Ex10, S1.3.2, H) Let T be a tree of order n = 2. Then the number of
leaves is
2+) (@d®) -2)

v:d(v)=3
* (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
* Every leaf node is not a cut vertex

The center of a tree is a vertex or ‘an edge’

* Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices

Any tree can be embedded in a ‘dense’ graph

* Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6 (G) = k. Then G contains T as a subgraph

Spanning tree

e Given a graph G and a subgraph T, T is a spanning tree of G if T is a
tree that contains every vertex of G

* Example: A telecommunications company tries to lay cable in a new
neighbourhood

* Proposition (2.1.5¢c, W) Every connected graph contains a spanning
tree

Minimal spanning tree - Kruskal’s Algorithm

* Given: A connected, weighted graph G
1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any
of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of G, then stop. If
not, repeat step 2

Example

FIGURE 1.43. The stages of Kruskal’s algorithm.

52

Theoretical guarantee of Kruskal's algorithm

(1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight

Cayley’s tree formula

* Theorem (1.18, H; 2.2.3, W). There
are n™ 2 distinct labeled trees of

ordern H|A>j\A
£d €3 €3

&

63 £3 €3 €3
£d £3 €3 3
Ao Ao Ao oA

FIGURE 1.46. Labeled trees on four vertices

Example

2 5
T=T, 4 *—
6 7
5 Evolving Sequence

4 ._I_(?, l 4
6 7

3 1
4,3
6 7
3 1
I_\ 4,31
6 7
3 1
0—\ 4.3,1,3
7
|
O\. 4,3,1,3,1
7

FIGURE 1.47. Creating a Priifer sequence.

c=0,-4,3,13,1

§=5,={1,23,4,5,6,7}
c,=3131
§:=1{1,3,4,56,7}
;=131

S,=1{1,3,5,6,7}

o,=3,1

§,=1{1,3,6,7}

o,=1

«—={1,3,7}

o, is empty

S={1,7}

FIGURE 1.48. Building a labeled tree.

vie V2
Ve Oy,
L J
)

V)

vie V2
Vg Vi
Vi

L

v e

Vie

Ve

L J
v
- ()
w

Vg Vi

L

vie V)

Vs V4

Vi

Ve V3

Vs Vi

Vi

V3

<

o <
-3
<
(=)

Vs vy

55

of trees with fixed degree sequence

* Corollary (2.2.4, W) Given positive integers d4, ..., d,, summing to

—2)! .
2n — 2, there are exactly H((TZZ-)1)' trees with vertex set [n] such that
l_ .

vertex [has degree d; for each i

* Example (2.2.5, W) Consider trees with vertices [7] that have degrees
(3)1)2)1)3)1)1)

]

Matrix tree theorem - cofactor

* For an n X n matrix A4, the i, j cofactor of
A is defined to be

(—1)i+j d@t(Mij)
where M;; represents the (n — 1) X

(n — 1) matrix formed by deleting row i
and column j from A

3 x 3 generic matrix [edit]

Consider a 3x3 matrix

aiy Q12 013
A= G Gy a3 |-
azy a3z 33

Its cofactor matrix is

(4 @2 G3| |G21
agy asj a3y
aljz a3 a1

C — —_ ~|_
azy @33 a3y
a1z a3 @11

* §

@y a3 aa

az3
ass

a3
azs

a3
a23

a2
a31

ay
(31

a1

Q21

az2
asa

aiz
a3z

ayz
a2

57

Matrix tree theorem

* Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled
graph with adjacency matrix A and degree matrix D, then the number
of unique spanning trees of G is equal to the value of any cofactor of
the matrix D — A

* |f the row sums and column sums of a matrix are all 0, then the
cofactors all have the same value

* Exercise Read the proof

* Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove
Cayley’s theorem

E X a m p | e b y The degree matrix D and adjacency matrix A are
1 2

2 0 0 0 0

D: ‘4:

—t T ket

0 2 0 0 0
0 0 3 0 1

and so _ _

2 0o -1 -1

0 2 -1 -1

M N D-A=| " T]

u X 1 -1 -1 3

The (1, 1) cofactorof D — A is

N X X T T

FIGURE 1.49. A labeled graph and its spanning trees. Score one for Kirchhoff!

* Exercise (Ex6, $1.3.4, H) Let e be an edge of K,,. Use Cayley’s Theorem
to prove that K,, — e has (n — 2)n™~3 spanning trees

59

O =
L |

Wiener index

* In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

* Wiener index D(G) = X2, ey () d6 (U, V)

 Theorem (2.1.14, W) Among trees with n vertices, the Wiener index
D (T) is minimized by stars and maximized by paths, both uniquely

* Over all connected n-vertex graphs, D(G) is minimized by K,, and
maximized (2.1.16, W) by paths

* (Lemma 2.1.15, W) If H is a subgraph of G, then d;(u,v) < dy(u,v)

Prefix coding

* A binary tree is a rooted plane tree where each vertex has at most
two children

* Given large computer files and limited storage, we want to encode
characters as binary lists to minimize (expected) total length

* Prefix-free coding: no code word is an initial portion of another

character encoding

* Example: 11001111011

A binary prefix code for the alphabet {a. b, ¢ 4. r, [}

Huffman’s Algorithm (2.3.13, W)

* Input: Weights (frequencies or probabilities) pq4, ..., py,
e Output: Prefix-free code (equivalently, a binary tree)

* |dea: Infrequent items should have longer codes; put infrequent items
deeper by combining them into parent nodes.

* Recursion: replace the two least likely items with probabilities p, p’
with a single item of weight p + p’

Example (2.3.14, W)

a 5 100

b 1 00000
C 1 00001
d 7 01

e 3 11

f 2 0001
g 3 001

h 6 101

The average length is

5X3+5+5+7%X2+---

33

30
—<3
11

Huffman coding is optimal

* Theorem (2.3.15, W) Given a probability distribution {p;} on n items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length

Huffman coding and entropy

* The entropy of a discrete probability distribution {p;} is that

H(p) = —z p; log, p;
i

* Exercise (Ex2.3.31, W) H(p) < average length of Huffman coding <
H(p) +1

* Exercise (Ex2.3.30, W) When each p; is a power of 12, average length
f Huff ding is H | |
0) urrman coding Is (p) Codewords KUC)+W(W*W”G)+W(0

average length - 2) | = : : -
g0 ens 2 4 8 8

51 .5 0 0
1.0 1.75 bits/symbol
S, 25 0 10 11 | 1
5 1 H = 5 log, 2 + 1 log, 4 + 3 log, 8 + 3 log, 8
1

110 3 3

SRR
228" 8
1.75

w N
a -y
M2 P2
on o
A /o
)
o
Il

111

Lecture 4: Circults

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

66

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Eulerian circuit

* A closed walk through a graph using every edge once is called an
Eulerian circuit

* A graph that has such a walk is called an Eulerian graph

* Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* (possibly with multiple edges)

* Proof “=” That ¢ must be connected is obvious.
Since the path enters a vertex through some edge and
leaves by another edge, it is clear that all degrees must be even

Key lemma

 Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2,

then G contains a cycle.

, n (1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.

68

Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex r and start with the trivial partial circuit ()

2. Given a partial circuit (xg, €1, X1, ..., Xt_1, €, X = Xp) that traverses not
all edges of G, remove these edges from G

3. Leti be the least integer for which x; is incident with one of the
remaining edges

4. Form a greedy partial circuit among the remaining edges of the form
(xi = Yo, 61, Vi Ys—1» e.s"' Vs = xi)

5. Expand the original circuit by setting
(X0s €1y s €5, X = V0, €1, V1, o) Vo1, €0, Vs = Xy €i41, wury €6, Xt = Xg)

6. Repeat step 2-5

Example

1. Start with the trivial circuit (1)

N

N oUW

10

Greedy algorithm yields the partial circuit
(1,2,4,3,1)

Remove these edges

The first vertex incident with remaining edges is 2
Greedy algorithms yields (2,5,8,2)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

10

11

11

Example (cont.)

. Remove these edges ' o o)
. First vertex incident with remaining edges is 7 50 °0 b”
. Greedy algorithm yields (7,9,11,7) 5O

. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

First vertex incident with remaining edges is 4

Greedy algorithm vields (4,6,7,4,9,6,10,4) O 10
.Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1) 50 o’

71

Eulerian circuit

"heorem (1.2.26, W) A graph G is Eulerian & it has at most one
nontrivial component and its vertices all have even degree

Konigsberg

72

Other properties

* Proposition (1.2.27, W) Every even graph decomposes into cycles

* The necessary and sufficient condition for a directed Eulerian circuit is
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’

TONCAS

* TONCAS: The obvious necessary condition is also sufficient

"heorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* Proposition (1.3.28, W) The nonnegative integers d4, ..., d,, are the
vertex degrees of some graph & }.I*, d; is even

* (Possibly with loops)
* Otherwise (2,0,0) is not realizable

1.3.63. (1) Let d,..., d, be integers such that d; > --- > d, > 0. Prove that there is
a loopless graph (multiple edges allowed) with degree sequence d, ..., d, if and only if
> diiseven and dy < dy +-- - +d,. (Hakimi [1962])

74

Hamiltonian path/circuits

* A path P is Hamiltonian if V(P) = V(G)

* Any graph contains a Hamiltonian path is called traceable

* A cycle C is called Hamiltonian if it spans all vertices of G
* A graph is called Hamiltonian if it contains a Hamiltonian circuit

* In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of

—a
—_—a
|
—_—a
_a

the dodecahedron (1

&

Figure 1.9

—

H

1)

75

Degree parity Is not a criterion

‘heorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

 Hamiltonian graphs
* all even degrees Cy
* all odd degrees Ky,
* a mixture G4

* non-Hamiltonian graphs G,
 all even G,
* all odd K5 ;
* mixed Py
G,

76

Example

* The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

* Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete

P, NP, NPC, NP-hard

* P The general class of questions for which some
algorithm can provide an answer in polynomial
time

* NP (nondeterministic polynomial time) The class

of questions for which an answer can be verified in
polynomial time

* NP-Complete
1. cisin NP
2. Every problem in NP is reducible to c in polynomial

time
* NP-hard
(1o NP
* Every problem in NP is reducible to c in polynomial time

NP-Hard

P # NP

NP-Hard

\ P=NP j
| = NP-Complete |,

Large minimal degree implies Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern = 3. 1f §(G) = n/2,
then G is Hamiltonian

n-1

- then G is connected

(1.3.15, W) If §(G) >

(Ex16, S1.1.2, H) (1.3.16, W)
If §(G) > =2

2 ’

then G need not be connected

 The bound is tight
(Ex12b, S1.4.3, H) G = K, ;-1 is not Hamiltonian
Exercise The condition when K. is Hamiltonian

* The condition is not necessary
* (C,, is Hamiltonian but with small minimum (and even maximum) degree

Generalized version

e Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of
order n = 3. If deg(x) + deg(y) = n for all pairs of nonadjacent
vertices x, y, then G is Hamiltonian

m (1.22, H, Dirac) Let G be a graph of ordern = 3. If §(G) = n/2,
then G is Hamiltonian

Independence number & Hamiltonian

* A set of vertices in a graph is called independent if S
they are pairwise nonadjacent / :

* The independence number of a graph G, denoted as
a(G), is the largest size of an independent set

e Example: a(G{) = 2,a(G,) = 3

(1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

(Ex14,S1.1.2, H) k(G) = 2 implies G has at least one cycle

81

Independence number & Hamiltonian 2

'heorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

* The resultis tight: k(G) = a(G)—1 is not enough
*Krryi:k=r,a=r+1
* Exercise (Ex4, S1.4.3, H) Peterson graph: k = 3, a = 4

FIGURE 1.63. The Petersen Graph.

82

Pattern-free & Hamiltonian A\ ﬂ

* G is H-free if G doesn’t contain a copy of H as induced subgraph

* Theorem (1.25, H) If G is 2-connected and {K1’3,Zl}-free, then G is
Hamiltonian

(Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle

* The condition 2-connectivity is necessary
e (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Lecture 5: Matchings

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

84

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Motivating example

Candidates

Jobs Q

Candidates

Jobs

85

Definitions

A matching is a set of independent edges, in which no pair of edges
shares a vertex

* The vertices incident to the edges of a matching M are M-saturated
(T FIHY)); the others are M-unsaturated

e A perfect matching in a graph is a matching that saturates every
vertex

* Example (3.1.2, W) The number of perfect matchings in K, ,, is n!

 Example (3.1.3, W) The number of perfect matchings in K, is

=

Maximal/maximum matchings # K /5 K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P, P: N NN
G 40 41

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching

Symmetric difference of matchings

@

* The symmetric difference of M,M" is MAM' = (M — M"Y U (M' — M)
* Lemma (3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle

Q — I ’ (®)

pr— —_\ - ~(

> \ 0 D o
) J "\ -

VS / (/4‘,» :_':) 1:1

Maximum matching and augmenting path

* Given a matching M, an M-alternating path is a path \ ’

that alternates between edges in M and edges not in

M /NN
* An M-alternating path whose endpoints are M- s 5 W Bk

unsaturated is an M-augmenting path

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matchingin G & G has | N ~
no M-augmenting path ;T

Lemma (3.1.9, W) Every component of the symmetric difference of /\ P % >\
two matchings is a path or an even cycle AT ?

VVVVVV

eeeeeeeee

89

Hall’'s theorem (TONCAS)

(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X & |[N(S)| = |S| forall S € X

n (3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G & G has
no M-augmenting path

* Exercise. Read the other two proofs in Diestel.

e Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

General regular graph

e Corollary (2.1.5, D) Every regular graph of positive even degree has a
2-factor
* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor

"heorem (1.2.26, W) A graph G is Eulerian & it has at most one
nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

91

Application to SDR

51 = {2.8)
e Given some family of sets X, a system of 5, = {81
distinct representatives for the sets in X Sz = {5,7},
is a ‘representative’ collection of distinct 51 = ﬁ-qf?
Sy = {2,4}.

elements from the sets of X
The family X1 = {57,552, 53,54} does have an SDR, namely {2,8,7,4}. The
family Xo = {57, 52, S4, .55} does not have an SDR.

* Theorem(1.52, H) Let 54, S,, ..., Si be a collection of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite

graph with partition X, Y.
G contains a matchingof X & [N(S)| = |S| forallS © X

92

Konig Theorem
Augmenting Path Algorithm

Vertex cover

e Aset U € V is a (vertex) cover of E if every edge in G is incident with
avertexinU

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
* A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?

Konig-Egevary Theorem (Min-max theorem)

(3.1.16, W; 1.53, H; 2.1.1, D; K6nig 1931; Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G & G has
no M-augmenting path

95

Augmenting path algorithm (3'2[;1'5\/\/)

X
* Input: G is Bipartite with X,Y, a matching M in G
U = {M-unsaturated vertices in X } y

* |dea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching

* Otherwise, select an unmarked x € S to explore

* Consider each y € N(x) such thatxy ¢ M
* If y is unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* includeyinT (reached from x) and include w in S (reached from y)
* After exploring all such edges incident to x, mark x and iterate.

Example

Red: A random matching
A A2 A3 A4 A5

97

Theoretical guarantee for Augmenting path
algorithm

* Theorem (3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size

Weighted Bipartite Matching
Hungarian Algorithm

Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

* Bipartite graph
* W.l.o.g. Assume the graph is K, , withw; ; > 0 forall i,j € [n]
* Optimization:

score(H) = 1.6

maxw(M,)= 2 a; jWi

s.t.a;q + - +amS1f0ranyl
aj+ -+ ay; < 1lforanyj
aUE{Ol}

* Integer programming
* General IP problems are NP-Complete

100

(Weighted) cover

e A (weighted) cover is a choice of labels u4, ..., u, and vy, ..., v, such
thatu; +v; = w;j forall i,

* The cost c(u, v) of a cover (u,v) is 2; u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

e Optimization problem

minc(u,v) = Zul Zvj

S. tul+v] Zwl]foranylj
u;, v; = 0foranyi,j

Duality

(IP)

maxz ai’jwi’j
T >
s.t.a;j; +--+a;, < 1lforanyi

aj+--+a,; <1foranyj
ai,j € {0,1}

(Linear programming)

max z al-,j Wi,j

L,j
s.t.a;j; +--+a;, < 1lforanyi
a;+--+a,; <1foranyj
Cli,j >0

(Dual)
minz u; + z Vj
> i j
s.t.u; +v; = w; jforany i, j
u;, vj = 0

* Weak duality theorem

* For each feasible solution a and (u, v)

i,j
thus max }; ja; jw; j <

i
minziui +Z]U]

J

102

Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

maxz ai’jWi,j = mlnz U; + z Uj
L,j i J
* Lemma (3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M).
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.

Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such that u; + v; = w; ;
* Soif c(u,v) = w(M) for some perfect matching M, then M is composed of
edgesin Gy,

* And if G, ,, contains a perfect matching M, then (u, v) and M (whose weights
are u; + v;) are both optimal

Hungarian algorithm

* Input: Weighted K, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
Gy, » has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; = 0
])

(Dual)
minz u; + Z Vj
i J
s.t.u; + v; = w; j forany i, j
U, vj = 0

Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |M| in G, ,,

cletR=XNQ,T=YNAQ
e=min{ui+vj—wi'j:xiEX—R,ijY—T}

* Decrease u; by € forx; € X — R and increase v; by e fory; € T
* Form the new equality subgraph and repeat

U S R

X

Example

Companies

108

Services

Defénse M"id Tuﬁ

Music Chef Clean

107

Example 2: Excess matrix

0 0000

- —
N~ Ol &

Ol M O
Ol O M
ol ol To B Qe

NN OoMm<H
S — _—

O~ o0 O

#

—_— ——
) O = O

=DM a0
O Mt OWw
O MmO

o R To B B n B
1{\

0 0 2 21

00110

Optimal value is the same
But the solution is not unique

|

N O Ol
O & m O
Ol 0 O M
Mmw < oIS

O Ol — N
I__.IE_\

W - O

Lﬂ.

T

NO Ol
Ol N O
Sl W0 O M
H O W

O M

uy O e w -

108

Theoretical guarantee for Hungarian
algorithm

* Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover

Example 3

L R

=
e

110

Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

 So the solution is a minimum vertex cover

Stable Matchings

Stable matching

* A family (<,),ey of linear orderings <, on E(v) is a set of

preferences for G

* A matching M in G is stable if for any edge e € E \ M, there exists an
edge f € M such that e and f have a common vertex v withe <, [

* Unstable: There exists xy € E \ M but xy’,x'y € M with xy' <, xy

X'y <y xy

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences histed
below, the matching {xa, yb, zd, wc} is a stable matching.

Men {x, y,z,w} Women {a, b, c,d}

x:a>b>c>d a:
b:y>w>x>1z

z:c>d>a>b c:
dix>y>z>w

yia>c>b>d

w:c>b>a>d

Z>X>y>Ww

Ww>x>y>72

113

Gale-Shapley Proposal Algorithm

* Input: Preference rankings by each of n men and n women

* Idea: Produce a stable matching using proposals by maintaining
information about who has proposed to whom and who has rejected
whom

* Iteration: Each man proposes to the highest woman on his preference
list who has not previously rejected him

* |f each woman receives exactly one proposal, stop and use the resulting
matching

e Otherwise, every woman receiving more than one proposal rejects all of them
except the one that is highest on her preference list

* Every woman receiving a proposal says “maybe” to the most attractive
proposal received

Example

,
[2] [«] [~] [=]

Round: 1
Proposors Acceplors Proposal pOOI
1 - -
Q (1@ horonose asnanesre
@ [z O0JO
® [
@ 7 ©)
C
Preferences
O0—-0O O—=O
Acceptor Table Proposor Table
1 3 2 4 @ 1 3 4
3 4 1 2 ©) 1 2 3
4 2 3 ® 3 2 4
3 2 1 4 @) 3 1 4

115

Example (gif)

Proposors Acceptors PI'OPOS&' p00|
1 @ « 1-4 propose, as none are
currently tentatively attached
? ®®

®
s @

OJCIOO

Preferences
O0—-0O O—-0O
Acceptor Table Proposor Table
1 3 2 4 M2 1 3 4
3 4 1 2 @4 1 2 3
4 2 3 1 G 3 2 4
3 2 1 4 @|2 3 1 4

116

Theoretical guarantee for the Proposal
Algorithm

* Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm
produces a stable matching

* Who proposes matters (jobs/candidates)

* Exercise Among all stable matchings, every man is happiest in the one
produced by the male-proposal algorithm and every woman is
happiest under the female-proposal algorithm

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences listed
below, the matching {xa, yb, zd, wc} is a stable matching. B

Men {x, y,z,w} Women {a, b, c, d}
x:a>b>c>d a:z>x>y>w
yia>c>b>d b:y>w>x>2
Z:e>a>as>d Ccrw>X>Yy>12
w:c>b>a>d d:x>y>z>w 117

Matchings in General Graphs

Perfect matchings

* K>, Cop, P>y, have perfect matchings

® Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

* Theorem(1.58, H) If G is a graph of order 2n such that 6(G) = n, then
(G has a perfect matching

1 (1.22, H, Dirac) Let G be a graph of ordern > 3. If §(G) = n/2,
then G is Hamiltonian

119

Tutte’s Theorem (TONCAS)

* Let g(G) be the number of connected components with odd order

* Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallS SV

/’/ A
i /
~ _Z | /’
|"/ I ! AN ~ ,
| B }// .\ | f
— < \ = \\ — 7{
& £y b @ ™~
7 S,
){ /’. (\3"]
P SEN
Py ~— NN
pi ~ -
& o) 3

Gs

Fig. 2.2.1. Tutte’s condition ¢(G — 5) < |S| for ¢ = 3, and the
contracted graph (G from Theorem 2.2.3. 120

Petersen’s Theorem

* Theorem (1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching

Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching © q(G —
S)<|S|forallScSV

121

Find augmenting paths in general graphs

* Different from bipartite graphs, a vertex can belong to bothSand T
y X
* Example: How to explore from M-unsaturated point u .

g

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching u v a
M in a graph G is a maximum matching in G © G has
no M-augmenting path

* Flower/stem/blossom

[o+]
D0 SS
vertex
. @ 122
B

Lifting

augmenting path

ontracted v

c

blossom B
F
=
[iw]
blossom
re
. Case 1.
blassorm

> —eo--- . Case 2.

cortracted

blossom

oo

augmenting path

@_._....0—.—.

Vg

blossom

blossom

Bui)

augmenting path

augmenting path

123

Edmonds’ blossom algorithm (3.3.17, W)

Input: A graph G, a matching M in G, an M-unsaturated vertex u

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found

* Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u
and the vertices reached along saturated edges

* Reaching an unsaturated vertex yields an augmentation.
Initialization: S = {u}and T =0

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u

. Otgeygwise, select an unmarked v € S. To explore from v, successively consider each y € N(v) s.t.
y

e Ifyis unhsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting
u, }"pat

 Ify €5, then a blossom has been found. Sus§)end the exploration of v and contract the blossom, replacing its
vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

* Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
» After exploring all such neighbors of v, mark v and iterate

Illustration

exposed exposed exposed
L] L L
Forest expansion
Vo es{vw) w X
FEEEEEEEEEE .-I----*
[LETE)
[LR TE)
[LR TE)
forest F and out-of-forest edges not in M out-of-forest wertices

out-of-forest edges in M

exposed exposed exposed

Blossom contraction

1l

forest F and out-of-forest edges notin M

&>—

L EEEE)
L EEEE
[SRR

out-of-forest vertices
out-of-forest edges inM

exposed exposed exposed

[] [1e)

Path detectionin G’

4 yied Suguawdne

*>—_
#‘ w
; ’ LLTE
o oes {vw)
: *lil‘-
é .I‘I TETE)

forest F* in G" and out-of-forest edges not inM* out-of-forest vertices
out-of-forest edges in M’

exposed exposed exposed
o] [] Q9
Path lifting

i

M
P
d yled dunual

[L)
L TEEE
[TLLL)

forest F and out-of-forest edges not in M out-of-forest vertices
out-of-forest edges in M

125

Example

f 8
a ¢ P a C g
U —> 7] h
[
b d b d
X X l
f
a c J

X 126

Example 2

.

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

127

Example 2 (cont.)

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

128

Lecture 6: More on
Connectivity

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

129

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Vertex cut set and connectivity

e A proper subset S of vertices is a vertex cut set if the graph G — S is
disconnected

* The connectivity, k(G), is the minimum size of a vertex set S of G such that
G — S is disconnected or has only one vertex

* The graph is k-connected if k < k(G)
e k(K,):=n—1
* If G is disconnected, k(G) =0

= Agraphis connected = k(G) > 1

* |f G is connected, non-complete graph of order n, then 0,

000 100

* For convention, k(K;) = 0
* Example (4.1.3, W) For k-dimensional cube Q,, = {0,1}%, k(Q;) = k

Edge-connectivity

disconnecting set edge cut

* A disconnecting set of edgesisaset F € E(G) such that G — F has
more than one component

* A graph is k-edge-connected if every disconnecting set has at least k edges

* The edge-connectivity of G, written A(G), is the minimum size of a
disconnecting set

* Given S, T € V(G), we write |S, T] for the set of edges having one
endpoint in S and the otherin T

* An edge cut is an edge set of the form [S, S¢] where S is a nonempty proper
subset of V(G)

* Every edge cut is a disconnecting set, but not vice versa

* Remark (4.1.8, W) Every minimal disconnecting set of edges is an
edge cut

Connectivity and edge-connectivity

o (1.4.2, D) If G is non-trivial, then k(G) < A(G) < 6(6)‘

* If6(G) =n—2,thenk(G) = 6(G)

thatis k(G) = A(G) = 6(G)

* Theorem (4.1.11, W) If G is a 3-regular graph, then k(G) = A(G)

132

Properties of edge cut

* When A(G) < 6(G), a minimum edge cut cannot isolate a vertex

 Similarly for (any) edge cut

* Proposition (4.1.12, W) If S is a set of vertices in a graph G, then
5,51 =) d() - 2e(GIS])

VES
* Corollary (4.1.13, W) If G is a simple graph and |[S, S€¢]| < §(G), then
S| > §(G)

* |S| must be much larger than a single vertex

Blocks

* A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block 1214 W) —>

° Example An edge e is a bridge < e lies on no cycle of G

* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

* An edge of a cycle cannot itself be a block
* An edge is block & it is a bridge @
* The blocks of a tree are its edges

* |f a block has more than two vertices, then it is 2-connected

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

Intersection of two blocks

* Proposition (4.1.19, W) Two blocks in a graph share at most one
vertex

* When two blocks share a vertex, it must be a cut-vertex

* Every edge is a subgraph with no cut-vertex and hence is in a block.
Thus blocks in a graph decompose the edge set

Block-cutpoint graph

* The block-cutpoint graph of a graph G is a bipartite graph H in which
one partite set consists of the cut-vertices of G, and the other has a
vertex b; for each block B; of G. We include vb; as an edge of H &
V€ Bi

* (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a
tree

Depth-first search (DFS)

* Depth-first search | i M

u a b c

 Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices
v, w such that v lies on the u, w-path in T

Finding blocks by DFS

* Input: A connected graph G

* Idea: Build a DFS tree T of G, discarding portions of T as blocks are
identified. Maintain one vertex called ACTIVE

* Initialization: Pick a root x € IV(H); make x ACTIVE; set T = {x}

 lteration: Let v denote the current active vertex

* |If v has an unexplored incident edge vw, then
 Ifw & V(T), then add vw to T, mark vw explored, make w ACTIVE
* Ifw € V(T), then w is an ancestor of v; mark vw explored

* If v has no more unexplored incident edges, then

e If v # x and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T’
rooted at v has an explored edge to an ancestor above w, then V(T") U {w} is the vertex
set of a block; record this information and delete V(T")

e if v = x, terminate

Example

139

Strong orientation

 Theorem (2.5, L; 4.2.14, W, Robbins 1939) A graph has a strong
orientation, i.e. an orientation that is a strongly connected digraph
& it is 2-edge-connected

* A directed graph is strongly connected if for every pair of vertices (v, w),
there is a directed path fromvtow

* Proposition (2.4, L) Let xy € T which is not a bridge in G and x is a parent of
y. Then there exists an edge in G but not in T joining some descendant a of y
and some ancestor b of x

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

2 (4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices

v, w such that v lies on the u, w-pathin T .

