上湴交通大雲
上海交通大学约翰•霍普克罗夫特计算机科学中心

CS 445：Combinatorics

Shuai Li
John Hopcroft Center，Shanghai Jiao Tong University https：／／shuaili8．github．io

https：／／shuaili8．github．io／Teaching／CS445／index．html

Basics

Graphs

- Definition A graph G is a pair (V, E)

```
We mainly focus on Simple graph:
No loops, no multi-edges
```

- V : set of vertices
- E : set of edges
- $e \in E$ corresponds to a pair of endpoints $x, y \in V$

edge	ends
a	x, z
b	y, w
c	x, z
d	z, w
e	z, w
f	x, y
g	z, w

(i) graph

(ii) graph with loop

(iii) digraph

(iv) multiple edges

Figure 1.2
Figure 1.1

Graphs: All about adjacency

- Same graph or not

(a)

(b)

(c)
- Two graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{1}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a bijection $f: V_{1} \rightarrow V_{2}$ s.t.

$$
e=\{a, b\} \in E_{1} \Leftrightarrow f(e):=\{f(a), f(b)\} \in E_{2}
$$

Example: Complete graphs

- There is an edge between every pair of vertices

Example: Regular graphs

- Every vertex has the same degree

Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs

$\mathbf{K}_{3,2}$

$K_{2,5}$

Example (1A, L): Peterson graph

- Show that the following two graphs are same/isomorphic

Figure 1.4

Example: Peterson graph (cont.)

- Show that the following two graphs are same/isomorphic

Subgraphs

- A subgraph of a graph G is a graph H such that

$$
V(H) \subseteq V(G), E(H) \subseteq E(G)
$$

and the ends of an edge $e \in E(H)$ are the same as its ends in G

- H is a spanning subgraph when $V(H)=V(G)$
- The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S

(a)

(b)

Subgraph (in red)

Induced Subgraph

Paths (路径)

- A path is a non-empty alternating sequence $v_{0} e_{1} v_{1} e_{2} \ldots e_{k} v_{k}$ where vertices are all distinct
- Or it can be written as $v_{0} v_{1} \ldots v_{k}$ in simple graphs
- P^{k} : path of length k (the number of edges)

Walk (游走)

- A walk is a non-empty alternating sequence $v_{0} e_{1} v_{1} e_{2} \ldots e_{k} v_{k}$
- The vertices not necessarily distinct
- The length = the number of edges
- Proposition (1.2.5, W) Every $u-v$ walk contains a $u-v$ path

Cycles (环)

- If $P=x_{0} x_{1} \ldots x_{k-1}$ is a path and $k \geq 3$, then the graph $C:=P+$ $x_{k-1} x_{0}$ is called a cycle
- C^{k} : cycle of length k (the number of edges/vertices)

- Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
- $N(x)$: set of all vertices adjacent to x
- neighbors of x
- A vertex is isolated vertex if it has no neighbors
- The number of edges incident with a vertex x is called the degree of x
- A loop contributes 2 to the degree
- A graph is finite when both $E(G)$ and $V(G)$ are finite sets

Handshaking Theorem (Euler 1736)

- Theorem A finite graph G has an even number of vertices with odd degree

Figure 1.2

Proof

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$
\sum_{x \in V(G)} \operatorname{deg}(x)=2|E(G)|
$$

edge	ends
a	x, z
b	y, w
c	x, z
d	z, w
e	z, w
f	x, y
g	z, w

Figure 1.1

Degree

- Minimal degree of $G: \delta(G)=\min \{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G)=\max \{d(v): v \in V\}$
- Average degree of $G: d(G)=\frac{1}{|V|} \sum_{v \in V} d(v)=\frac{2|E|}{|V|}$
- All measure the `density' of a graph
- $d(G) \geq \delta(G)$

Degree (global to local)

- Proposition (1.2.2, D) Every graph G with at least one edge has a subgraph H with

$$
\delta(H)>\frac{1}{2} d(H) \geq \frac{1}{2} d(G)
$$

- Example: $|G|=7, d(G)=\frac{16}{7}$
- $\delta(H)=2, d(H)=\frac{14}{5}$

Minimal degree guarantees long paths and cycles

- Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G)+1$, provided $\delta(G) \geq 2$.

Distance and diameter

- The distance $d_{G}(x, y)$ in G of two vertices x, y is the length of a shortest $x \sim y$ path
- if no such path exists, we set $d(x, y):=\infty$
- The greatest distance between any two vertices in G is the diameter of G

$$
\operatorname{diam}(G)=\max _{x, y \in V} d(x, y)
$$

Example -- Erdős number

- A well-known graph
- vertices: mathematicians of the world
- Two vertices are adjacent if and only if they have published a joint paper
- The distance in this graph from some mathematician to the vertex Paul Erdős is known as his or her Erdős number

Radius and diameter

- A vertex is central in G if its greatest distance from other vertex is smallest, such greatest distance is the radius of G

$$
\operatorname{rad}(\mathrm{G}):=\min _{x \in V} \max _{y \in V} d(x, y)
$$

- Proposition (1.4, H; Ex1.6, D) $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$

Radius and maximum degree control graph size

- Proposition (1.3.3, D) A graph G with radius at most r and maximum degree at most $\Delta \geq 3$ has fewer than $\frac{\Delta}{\Delta-2}(\Delta-1)^{r}$.

Lecture 2: Girth, Connectivity and Bipartite Graphs

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

Girth

- The minimum length of a cycle in a graph G is the girth $g(G)$ of G
- Example: The Peterson graph is the unique 5-cage
- cubic graph (every vertex has degree 3)
- girth = 5
- smallest graph satisfies the above properties

Girth (cont.)

- A tree has girth ∞
- Note that a tree can be colored with two different colors
- \Rightarrow A graph with large girth has small chromatic number?
- Unfortunately NO!

- Theorem (Erdős, 1959) For all k, l, there exists a graph G with $g(G)>l$ and $\chi(G)>k$

Girth and diameter

- Proposition (1.3.2, D) Every graph G containing a cycle satisfies $g(G) \leq 2 \operatorname{diam}(G)+1$
-When the equality holds?

Girth and minimal degree lower bounds graph size

- $n_{0}(\delta, g):=\left\{\begin{array}{cl}1+\delta \sum_{i=0}^{r-1}(\delta-1)^{i}, & \text { if } g=2 r+1 \text { is odd } \\ 2 \sum_{i=0}^{r-1}(\delta-1)^{i}, & \text { if } g=2 r \text { is even }\end{array}\right.$
- Exercise (Ex7, ch1, D) Let G be a graph. If $\delta(G) \geq \delta \geq 2$ and $g(G) \geq$ g, then $|G| \geq n_{0}(\delta, g)$
- Corollary (1.3.5, D) If $\delta(G) \geq 3$, then $g(G)<2 \log _{2}|G|$

Triangle-free upper bounds \# of edges

- Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in an n-vertex triangle-free simple graph is $\left\lfloor n^{2} / 4\right\rfloor$
- The bound is best possible
- There is a triangle-free graph with $\left\lfloor n^{2} / 4\right\rfloor$ edges: $K_{\lfloor n / 2\rfloor,[n / 2\rceil}$
- Extremal problems

Connected, connected component

- A graph G is connected if $G \neq \varnothing$ and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component

Quiz

- Problem (1B, L) Suppose G is a graph on 10 vertices that is not connected. Prove that G has at most 36 edges. Can equality occur?
- More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not connected. What is the maximum size of G ?

Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \geq \frac{n-1}{2}$, then G is connected
- (Ex16, S1.1.2, H; 1.3.16, W)

If $\delta(G) \geq \frac{n-2}{2}$, then G need not be connected

- Extremal problems
- "best possible" "sharp"

Add/delete an edge

- Components are pairwise disjoint; no two share a vertex

- Adding an edge decreases the number of components by 0 or 1
- \Rightarrow deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W) Every graph with n vertices and k edges has at least $n-k$ components
- An edge e is called a bridge if the graph $G-e$ has more components
- Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

Cut vertex and connectivity

- A node v is a cut vertex if the graph $G-v$ has more components
- A proper subset S of vertices is a vertex cut set if the
 graph $G-S$ is disconnected, or trivial (a graph of order 0 or 1)
- The connectivity, $\kappa(G)$, is the minimum size of a cut set of G
- The graph is k-connected for any $k \leq \kappa(G)$

Connectivity properties

- $\kappa\left(K^{n}\right)=n-1$
- If G is disconnected, $\kappa(G)=0$
- \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \geq 1$
- If G is connected, non-complete graph of order n, then

$$
1 \leq \kappa(G) \leq n-2
$$

Connectivity properties (cont.)

Proposition (1.2.14, W)
An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- $\kappa(G) \geq 2 \Leftrightarrow G$ is connected and has no cut vertices
- A vertex lies on a cycle \nRightarrow it is not a cut vertex
- \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one cycle $\nRightarrow \kappa(G) \geq 2$
- (Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle
- (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \geq n-2$, then $\kappa(G)=\delta(G)$

Edge-connectivity

- A proper subset $F \subset E$ is edge cut set if the graph $G-F$ is disconnected
- The edge-connectivity $\lambda(G)$ is the minimal size of edge cut set
- $\lambda(G)=0$ if G is disconnected
- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Large average (minimal) degree implies local large connectivity

- Theorem (1.4.3, D, Mader 1972) Every graph G with $d(G) \geq 4 k$ has a $(k+1)$-connected subgraph H such that $d(H)>d(G)-2 k$.

Bipartite graphs

- Theorem (1.2.18, W, Kőnig 1936) A graph is bipartite \Leftrightarrow it contains no odd cycle

Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

- The union of graphs G_{1}, \ldots, G_{k}, written $G_{1} \cup \cdots \cup G_{k}$, is the graph with vertex set $\bigcup_{i=1}^{k} V\left(G_{i}\right)$ and edge set $\cup_{i=1}^{k} E\left(G_{i}\right)$
- Consider an air traffic system with k airlines
- Each pair of cities has direct service from at least one airline
- No airline can schedule a cycle through an odd number of cities
- Then, what is the maximum number of cities in the system?

- Theorem (1.2.23, W) The complete graph K_{n} can be expressed as the union of k bipartite graphs $\Leftrightarrow n \leq 2^{k}$

Bipartite subgraph is large

- Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph with at least $|E| / 2$ edges

Lecture 3: Trees

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Trees

- A tree is a connected graph T with no cycles

Properties

- Recall that Theorem (1.2.18, W, Kőnig 1936)
- Recall that A graph is bipartite \Leftrightarrow it contains no odd cycle
- \Rightarrow (Ex 3, S1.3.1,H) A tree of order $n \geq 2$ is a bipartite graph

Proposition (1.2.14, W)

- Recall that $\begin{gathered}\text { An edge } e \text { is a bridge } \Leftrightarrow e \text { lies on no cycle of } G \\ \cdot \text { Or equivalently, an edge } e \text { is not a bridge } \Leftrightarrow e \text { lies on a cycle of } G\end{gathered}$
- \Rightarrow Every edge in a tree is a bridge
- T is a tree $\Leftrightarrow T$ is minimally connected, i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
\Leftrightarrow Any two vertices of T are linked by a unique path in T
$\Leftrightarrow T$ is minimally connected
- i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$
$\Leftrightarrow T$ is maximally acyclic
- i.e. T contains no cycle but $T+x y$ does for any non-adjacent vertices $x, y \in$ T
\Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with $n-1$ edges
\Leftrightarrow (Theorem $1.13, \mathrm{H}) T$ is acyclic with $n-1$ edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ. Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then the number of leaves is

$$
2+\sum_{v: d(v) \geq 3}(d(v)-2)
$$

- (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
- Every leaf node is not a cut vertex

The center of a tree is a vertex or 'an edge'

- Theorem $(1.15, \mathrm{H})$ In any tree, the center is either a single vertex or a pair of adjacent vertices

Any tree can be embedded in a 'dense' graph

- Theorem $(1.16, \mathrm{H})$ Let T be a tree of order $k+1$ with k edges. Let G be a graph with $\delta(G) \geq k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Minimal spanning tree - Kruskal's Algorithm

- Given: A connected, weighted graph G

1. Find an edge of minimum weight and mark it.
2. Among all of the unmarked edges that do not form a cycle with any of the marked edges, choose an edge of minimum weight and mark it
3. If the set of marked edges forms a spanning tree of G, then stop. If not, repeat step 2

Example

Theoretical guarantee of Kruskal's algorithm

- Theorem $(1.17, \mathrm{H})$ Kruskal's algorithm produces a spanning tree of minimum total weight

Cayley's tree formula

FIGURE 1.45. Labeled trees on three vertices.

- Theorem (1.18, H; 2.2.3, W). There are n^{n-2} distinct labeled trees of order n

ริร รร รร

โร โร โร

Example

$$
T=T_{0}
$$

Evolving Sequence
4

4,3
$4,3,1$

4, 3, 1, 3
$4,3,1,3,1$

\# of trees with fixed degree sequence

- Corollary (2.2.4, W) Given positive integers d_{1}, \ldots, d_{n} summing to $2 n-2$, there are exactly $\frac{(n-2)!}{\Pi\left(d_{i}-1\right)!}$ trees with vertex set $[n]$ such that vertex i has degree d_{i} for each i
- Example (2.2.5, W) Consider trees with vertices [7] that have degrees (3,1,2,1,3,1,1)

Matrix tree theorem - cofactor

- For an $n \times n$ matrix A, the i, j cofactor of A is defined to be

$$
(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

where $M_{i j}$ represents the $(n-1) \times$ ($n-1$) matrix formed by deleting row i and column j from A
3×3 generic matrix [edit]
Consider a 3×3 matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Its cofactor matrix is

$$
\mathbf{C}=\left(\begin{array}{lll}
+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
+\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{array}\right),
$$

Matrix tree theorem

- Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled graph with adjacency matrix A and degree matrix D, then the number of unique spanning trees of G is equal to the value of any cofactor of the matrix $D-A$
- If the row sums and column sums of a matrix are all 0 , then the cofactors all have the same value
- Exercise Read the proof
- Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove Cayley's theorem

Example

The degree matrix D and adjacency matrix A are

$$
D=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right], \quad A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

FIGURE 1.49. A labeled graph and its spanning trees.

$$
D-A=\left[\begin{array}{cccc}
2 & 0 & -1 & -1 \\
0 & 2 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

The $(1,1)$ cofactor of $D-A$ is

$$
\operatorname{det}\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]=8
$$

Score one for Kirchhoff!

- Exercise (Ex6, S1.3.4, H) Let e be an edge of K_{n}. Use Cayley's Theorem to prove that $K_{n}-e$ has $(n-2) n^{n-3}$ spanning trees

Wiener index

- In a communication network, large diameter may be acceptable if most pairs can communicate via short paths. This leads us to study the average distance instead of the maximum
- Wiener index $D(G)=\sum_{u, v \in V(G)} d_{G}(u, v)$
- Theorem (2.1.14, W) Among trees with n vertices, the Wiener index $D(T)$ is minimized by stars and maximized by paths, both uniquely
- Over all connected n-vertex graphs, $D(G)$ is minimized by K_{n} and maximized (2.1.16, W) by paths
- (Lemma 2.1.15, W) If H is a subgraph of G, then $d_{G}(u, v) \leq d_{H}(u, v)$

Prefix coding

- A binary tree is a rooted plane tree where each vertex has at most two children
- Given large computer files and limited storage, we want to encode characters as binary lists to minimize (expected) total length
- Prefix-free coding: no code word is an initial portion of another
- Example: 11001111011

Huffman's Algorithm (2.3.13, W)

- Input: Weights (frequencies or probabilities) p_{1}, \ldots, p_{n}
- Output: Prefix-free code (equivalently, a binary tree)
- Idea: Infrequent items should have longer codes; put infrequent items deeper by combining them into parent nodes.
- Recursion: replace the two least likely items with probabilities p, p^{\prime} with a single item of weight $p+p^{\prime}$

Example (2.3.14, W)

a	5	100
b	1	00000
c	1	00001
d	7	01
e	8	11
f	2	0001
g	3	001
h	6	101

The average length is $\frac{5 \times 3+5+5+7 \times 2+\cdots}{33}=\frac{30}{11}<3$

Huffman coding is optimal

- Theorem (2.3.15, W) Given a probability distribution $\left\{p_{i}\right\}$ on n items, Huffman's Algorithm produces the prefix-free code with minimum expected length

Huffman coding and entropy

- The entropy of a discrete probability distribution $\left\{p_{i}\right\}$ is that

$$
H(p)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

- Exercise (Ex2.3.31, W) $H(p) \leq$ average length of Huffman coding \leq $H(p)+1$
- Exercise (Ex2.3.30, W) When each p_{i} is a power of $1 / 2$, average length of Huffman coding is $H(p)$

Codewords
1.0

10
110
111
average length $=(1)\left(\frac{1}{2}\right)+(2)\left(\frac{1}{4}\right)+(3)\left(\frac{1}{8}\right)+(3)\left(\frac{1}{8}\right)$
$=1.75 \mathrm{bits} / \mathrm{symbol}$

$$
\begin{aligned}
H & =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8 \\
& =\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{3}{8} \\
& =1.75
\end{aligned}
$$

Lecture 4: Circuits

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University https://shuaili8.github.io
https://shuaili8.github.io/Teaching/CS445/index.html

Eulerian circuit

- A closed walk through a graph using every edge once is called an Eulerian circuit
- A graph that has such a walk is called an Eulerian graph
- Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree
- (possibly with multiple edges)
- Proof " \Rightarrow " That G must be connected is obvious.

Since the path enters a vertex through some edge and leaves by another edge, it is clear that all degrees must be even

Key lemma

- Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2 , then G contains a cycle.

Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G)+1$, provided $\delta(G) \geq 2$.

Hierholzer's Algorithm for Euler Circuits

1. Choose a root vertex r and start with the trivial partial circuit (r)
2. Given a partial circuit $\left(x_{0}, e_{1}, x_{1}, \ldots, x_{t-1}, e_{t}, x_{t}=x_{0}\right)$ that traverses not all edges of G, remove these edges from G
3. Let i be the least integer for which x_{i} is incident with one of the remaining edges
4. Form a greedy partial circuit among the remaining edges of the form $\left(x_{i}=y_{0}, e_{1}^{\prime}, y_{1}, \ldots, y_{s-1}, e_{s}^{\prime}, y_{s}=x_{i}\right)$
5. Expand the original circuit by setting

$$
\left(x_{0}, e_{1}, \ldots, e_{i}, x_{i}=y_{0}, e_{1}^{\prime}, y_{1}, \ldots, y_{s-1}, e_{s}^{\prime}, y_{s}=x_{i}, e_{i+1}, \ldots, e_{t}, x_{t}=x_{0}\right)
$$

6. Repeat step 2-5

Example

1. Start with the trivial circuit (1)
2. Greedy algorithm yields the partial circuit

$$
(1,2,4,3,1)
$$

3. Remove these edges
4. The first vertex incident with remaining edges is 2
5. Greedy algorithms yields $(2,5,8,2)$
6. Expanding ($1,2,5,8,2,4,3,1$)
7. Remove these edges

Example (cont.)

6. Expanding (1,2,5,8,2,4,3,1)

7. Remove these edges

8. First vertex incident with remaining edges is 4
9. Greedy algorithm yields $(4,6,7,4,9,6,10,4)$
10. Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1)
11. Remove these edges
12. First vertex incident with remaining edges is 7
13. Greedy algorithm yields $(7,9,11,7)$

14. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Eulerian circuit

- Theorem $(1.2 .26, \mathrm{~W}) \mathrm{A}$ graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Other properties

- Proposition (1.2.27, W) Every even graph decomposes into cycles
- The necessary and sufficient condition for a directed Eulerian circuit is that the graph is connected and that each vertex has the same 'indegree' as 'out-degree'

TONCAS

- TONCAS: The obvious necessary condition is also sufficient
- Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree
- Proposition (1.3.28, W) The nonnegative integers d_{1}, \ldots, d_{n} are the vertex degrees of some graph $\Leftrightarrow \sum_{i=1}^{n} d_{i}$ is even
- (Possibly with loops)
- Otherwise $(2,0,0)$ is not realizable
1.3.63. (!) Let d_{1}, \ldots, d_{n} be integers such that $d_{1} \geq \cdots \geq d_{n} \geq 0$. Prove that there is
- a loopless graph (multiple edges allowed) with degree sequence d_{1}, \ldots, d_{n} if and only if $\sum d_{i}$ is even and $d_{1} \leq d_{2}+\cdots+d_{n}$. (Hakimi [1962])

Hamiltonian path／circuits

－A path P is Hamiltonian if $V(P)=V(G)$
－Any graph contains a Hamiltonian path is called traceable
－A cycle C is called Hamiltonian if it spans all vertices of G
－A graph is called Hamiltonian if it contains a Hamiltonian circuit
－In the mid－19th century，Sir William Rowan Hamilton tried to popularize the exercise of finding such a closed path in the graph of the dodecahedron（正十二面体）

Figure 1.9

Degree parity is not a criterion

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

- Hamiltonian graphs
- all even degrees C_{10}
- all odd degrees K_{10}
- a mixture G_{1}
- non-Hamiltonian graphs
- all even G_{2}
- all odd $K_{5,7}$
- mixed P_{9}

G_{1}

G_{2}

Example

- The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

- Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete

P, NP, NPC, NP-hard

- P The general class of questions for which some algorithm can provide an answer in polynomial time
- NP (nondeterministic polynomial time) The class of questions for which an answer can be verified in polynomial time
- NP-Complete

1. c is in NP

2. Every problem in NP is reducible to c in polynomial time

- NP-hard
-cisin NP
- Every problem in NP is reducible to c in polynomial time

Large minimal degree implies Hamiltonian

- Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is Hamiltonian

> Proposition $(1.3 .15, \mathrm{~W})$ If $\delta(G) \geq \frac{n-1}{2}$, then G is connected (Ex16, S1.1.2, H) $(1.3 .16, \mathrm{~W})$ If $\delta(G) \geq \frac{n-2}{2}$, then G need not be connected

- The bound is tight (Ex12b, S1.4.3, H) $G=K_{r, r+1}$ is not Hamiltonian Exercise The condition when $K_{r, s}$ is Hamiltonian
- The condition is not necessary
- C_{n} is Hamiltonian but with small minimum (and even maximum) degree

Generalized version

- Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of order $n \geq 3$. If $\operatorname{deg}(x)+\operatorname{deg}(y) \geq n$ for all pairs of nonadjacent vertices x, y, then G is Hamiltonian

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is Hamiltonian

Independence number \& Hamiltonian

- A set of vertices in a graph is called independent if they are pairwise nonadjacent
- The independence number of a graph G, denoted as
 $\alpha(G)$, is the largest size of an independent set
- Example: $\alpha\left(G_{1}\right)=2, \alpha\left(G_{2}\right)=3$
- Theorem $(1.24, H)$ Let G be a connected graph of order $n \geq 3$. If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian
(Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle

Independence number \& Hamiltonian 2

Theorem (1.24, H) Let G be a connected graph of order $n \geq 3$. If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian

- The result is tight: $\kappa(G) \geq \alpha(G)-1$ is not enough
- $K_{r, r+1}: \kappa=\mathrm{r}, \alpha=r+1$
- Exercise (Ex4, S1.4.3, H) Peterson graph: $\kappa=3, \alpha=4$

FIGURE 1.63. The Petersen Graph.

Pattern-free \& Hamiltonian

- G is H-free if G doesn't contain a copy of H as induced subgraph
- Theorem $(1.25, \mathrm{H})$ If G is 2 -connected and $\left\{K_{1,3}, Z_{1}\right\}$-free, then G is Hamiltonian

$$
\text { (Ex14, S1.1.2, H) } \kappa(G) \geq 2 \text { implies } G \text { has at least one cycle }
$$

- The condition 2-connectivity is necessary
- (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Lecture 5: Matchings

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io
https://shuaili8.github.io/Teaching/CS445/index.html

Motivating example

Definitions

－A matching is a set of independent edges，in which no pair of edges shares a vertex
－The vertices incident to the edges of a matching M are M－saturated （饱和的）；the others are M－unsaturated
－A perfect matching in a graph is a matching that saturates every vertex
－Example（3．1．2，W）The number of perfect matchings in $K_{n, n}$ is n ！
－Example（3．1．3，W）The number of perfect matchings in $K_{2 n}$ is

$$
f_{n}=(2 n-1)(2 n-3) \cdots 1=(2 n-1)!!
$$

Maximal／maximum matchings 极大／最大

－A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
－A maximum matching is a matching of maximum size among all matchings in the graph
－Example：P_{3}, P_{5}

－Every maximum matching is maximal，but not every maximal matching is a maximum matching

Symmetric difference of matchings

- The symmetric difference of M, M^{\prime} is $M \Delta M^{\prime}=\left(M-M^{\prime}\right) \cup\left(M^{\prime}-M\right)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

- Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M
- An M-alternating path whose endpoints are M -
 unsaturated is an M-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Lemma $(3.1 .9, \mathrm{~W})$ Every component of the symmetric difference of two matchings is a path or an even cycle

Hall's theorem (TONCAS)

- Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y.
G contains a matching of $X \Leftrightarrow|N(S)| \geq|S|$ for all $S \subseteq X$

> Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular ($k>0$) bipartite graph has a perfect matching

General regular graph

- Corollary (2.1.5, D) Every regular graph of positive even degree has a 2 -factor
- A k-regular spanning subgraph is called a k-factor
- A perfect matching is a 1 -factor

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular $(k>0)$ bipartite graph has a perfect matching

Application to SDR

- Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

$$
\begin{aligned}
S_{1} & =\{2,8\}, \\
S_{2} & =\{8\}, \\
S_{3} & =\{5,7\}, \\
S_{4} & =\{2,4,8\}, \\
S_{5} & =\{2,4\} .
\end{aligned}
$$

The family $X_{1}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ does have an SDR, namely $\{2,8,7,4\}$. The family $X_{2}=\left\{S_{1}, S_{2}, S_{4}, S_{5}\right\}$ does not have an SDR.

- Theorem $(1.52, \mathrm{H})$ Let $S_{1}, S_{2}, \ldots, S_{k}$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in[k]$, the union of any t of these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y.
G contains a matching of $X \Leftrightarrow|N(S)| \geq|S|$ for all $S \subseteq X$

König Theorem
Augmenting Path Algorithm

Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
- Art museum is a graph with hallways are edges and corners are nodes
- A security camera at the corner will guard the paintings on the hallways
- The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

- Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

```
Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G\LeftrightarrowG has
no M-augmenting path
```


Augmenting path algorithm (3.2.1, W)

- Input: G is Bipartite with X, Y, a matching M in G $U=\{M$-unsaturated vertices in $X\}$
- Idea: Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- Initialization: $S=U, T=\varnothing$ and all vertices in S are unmarked
- Iteration:
- If S has no unmarked vertex, stop and report $T \cup(X-S)$ as a minimum cover and M as a maximum matching
- Otherwise, select an unmarked $x \in S$ to explore
- Consider each $y \in N(x)$ such that $x y \notin M$
- If y is unsaturated, terminate and report an M-augmenting path from U to y
- Otherwise, $y w \in M$ for some w
- include y in T (reached from x) and include w in S (reached from y)
- After exploring all such edges incident to x, mark x and iterate.

Example

Red: A random matching

Theoretical guarantee for Augmenting path algorithm

- Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight $w(M)$
- Bipartite graph
- W.l.o.g. Assume the graph is $K_{n, n}$ with $w_{i, j} \geq 0$ for all $i, j \in[n]$
- Optimization:

$$
\begin{aligned}
& \max w\left(M_{a}\right)=\sum_{i, j} a_{i, j} w_{i, j} \\
& \text { s.t. } a_{i, 1}+\cdots+a_{i, n} \leq 1 \text { for any } i \\
& \quad a_{1, j}+\cdots+a_{n, j} \leq 1 \text { for any } j \\
& \quad a_{i, j} \in\{0,1\}
\end{aligned}
$$

$$
\operatorname{score}(H)=1.6
$$

- Integer programming
- General IP problems are NP-Complete

(Weighted) cover

- A (weighted) cover is a choice of labels u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} such that $u_{i}+v_{j} \geq w_{i, j}$ for all i, j
- The cost $c(u, v)$ of a cover (u, v) is $\sum_{i} u_{i}+\sum_{j} v_{j}$
- The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

$$
\begin{aligned}
& \min c(u, v)=\sum_{i} u_{i}+\sum_{j} v_{j} \\
& \text { s.t. } u_{i}+v_{j} \geq w_{i, j} \text { for any } i, j \\
& \quad u_{i}, v_{j} \geq 0 \text { for any } i, j
\end{aligned}
$$

Duality

- Weak duality theorem
- For each feasible solution a and (u, v)

$$
\sum_{i, j} a_{i, j} w_{i, j} \leq \sum_{i} u_{i}+\sum_{j} v_{j}
$$

thus $\max \sum_{i, j} a_{i, j} w_{i, j} \leq \min \sum_{i} u_{i}+\sum_{j} v_{j}$

Duality (cont.)

- Strong duality theorem
- If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$
\max \sum_{i, j} a_{i, j} w_{i, j}=\min \sum_{i} u_{i}+\sum_{j} v_{j}
$$

- Lemma (3.2.7, W) For a perfect matching M and $\operatorname{cover}(u, v)$ in a weighted bipartite graph $G, c(u, v) \geq w(M)$.
$c(u, v)=w(M) \Leftrightarrow M$ consists of edges $x_{i} y_{j}$ such that $u_{i}+v_{j}=w_{i, j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u, v}$ for a cover (u, v) is the spanning subgraph of $K_{n, n}$ having the edges $x_{i} y_{j}$ such that $u_{i}+v_{j}=w_{i, j}$
- So if $c(u, v)=w(M)$ for some perfect matching M, then M is composed of edges in $G_{u, v}$
- And if $G_{u, v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_{i}+v_{j}$) are both optimal

Hungarian algorithm

- Input: Weighted $K_{n, n}=B(X, Y)$
- Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u, v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_{i}=\max _{j} w_{i, j}, v_{j}=0$

$$
\begin{aligned}
& \text { (Dual) } \\
& \begin{array}{l}
\min \sum_{i} u_{i}+\sum_{j} v_{j} \\
\text { s.t. } u_{i}+v_{j} \geq w_{i, j} \text { for any } i, j \\
\quad u_{i}, v_{j} \geq 0
\end{array}
\end{aligned}
$$

Hungarian algorithm (cont.)

- Iteration: Find a maximum matching M in $G_{u, v}$
- If M is a perfect matching, stop and report M as a maximum weight matching
- Otherwise, let Q be a vertex cover of size $|M|$ in $G_{u, v}$
- Let $R=X \cap Q, T=Y \cap Q$

$$
\epsilon=\min \left\{u_{i}+v_{j}-w_{i, j}: x_{i} \in X-R, y_{j} \in Y-T\right\}
$$

- Decrease u_{i} by ϵ for $x_{i} \in X-R$ and increase v_{j} by ϵ for $y_{j} \in T$
- Form the new equality subgraph and repeat

Example

Example 2: Excess matrix

$$
\left.\left(\begin{array}{lllll}
4 & 1 & 6 & 2 & 3 \\
5 & 0 & 3 & 7 & 6 \\
2 & 3 & 4 & 5 & 8 \\
3 & 4 & 6 & 3 & 4 \\
4 & 6 & 5 & 8 & 6
\end{array}\right) \rightarrow \begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
6 \\
7 & 5 & 0 & 4 & 3 \\
2 & 7 & 4 & 0 & 1 \\
6 & 5 & 4 & 3 & 0 \\
3 & 2 & 0 & 3 & 2 \\
4 & 2 & 3 & 0 & 2
\end{array}\right) R \quad X \quad Y \bullet \underbrace{}_{T}
$$

	$\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}$				0	0	2			1
	$\left(\begin{array}{lllll}1 & 4 & \underline{0} & 4 & 2\end{array}\right)$					3	0		4	2
	$\left(\begin{array}{lllll}1 & 6 & 4 & \underline{0} & 0\end{array}\right.$	$3{ }^{\circ}$			$\underline{0}$	5	4		0	0
	$\begin{array}{llllll}6 & 5 & 5 & 4 & \underline{0}\end{array}$	\times	\rightarrow		5	4	5		4	0
	$\left(\begin{array}{lllll}2 & 1 & 0 & 3 & 1\end{array}\right)$						0		3	1
	$\left(\begin{array}{lllll}3 & 1 & 3 & 0 & 1\end{array}\right)$	$T \quad T \quad T$		6		0	3			

Optimal value is the same
But the solution is not unique

Theoretical guarantee for Hungarian algorithm

- Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Example 3

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Stable Matchings

Stable matching

- A family $\left(\leq_{v}\right)_{v \in V}$ of linear orderings \leq_{v} on $E(v)$ is a set of preferences for G
- A matching M in G is stable if for any edge $e \in E \backslash M$, there exists an edge $f \in M$ such that e and f have a common vertex v with $e<_{v} f$
- Unstable: There exists $x y \in E \backslash M$ but $x y^{\prime}, x^{\prime} y \in M$ with $x y^{\prime}<_{x} x y$ $x^{\prime} y<_{y} x y$
3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{x a, y b, z d, w c\}$ is a stable matching.

$$
\begin{array}{cl}
\text { Men }\{x, y, z, w\} & \text { Women }\{a, b, c, d\} \\
x: a>b>c>d & a: z>x>y>w \\
y: a>c>b>d & b: y>w>x>z \\
z: c>d>a>b & c: w>x>y>z \\
w: c>b>a>d & d: x>y>z>w
\end{array}
$$

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of n men and n women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
- If each woman receives exactly one proposal, stop and use the resulting matching
- Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
- Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Round: 1

Example (gif)

Round: 1

Preferences

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- Exercise Among all stable matchings, every man is happiest in the one produced by the male-proposal algorithm and every woman is happiest under the female-proposal algorithm
3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{x a, y b, z d, w c\}$ is a stable matching.

$$
\begin{array}{cl}
\operatorname{Men}\{x, y, z, w\} & \text { Women }\{a, b, c, d\} \\
x: a>b>c>d & a: z>x>y>w \\
y: a>c>b>d & b: y>w>x>z \\
z: c>d>a>b & c: w>x>y>z \\
w: c>b>a>d & d: x>y>z>w
\end{array}
$$

Matchings in General Graphs

Perfect matchings

- $K_{2 n}, C_{2 n}, P_{2 n}$ have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular $(k>0)$ bipartite graph has a perfect matching
- Theorem $(1.58, \mathrm{H})$ If G is a graph of order $2 n$ such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let $q(G)$ be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W)

Let G be a graph of order $n \geq 2$. G has a perfect matching $\Leftrightarrow q(G-$ $S) \leq|S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leqslant|S|$ for $q=3$, and the contracted graph G_{S} from Theorem 2.2.3.

Petersen's Theorem

- Theorem (1.60, H; 2.2.2, D;3.3.8, W)

Every bridgeless, 3-regular graph contains a perfect matching

Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order $n \geq 2$. G has a perfect matching $\Leftrightarrow q(G-$ $S) \leq|S|$ for all $S \subseteq V$

Find augmenting paths in general graphs

- Different from bipartite graphs, a vertex can belong to both S and T
- Example: How to explore from M-unsaturated point u

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Flower/stem/blossom

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- Idea: Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
- Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
- Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S=\{u\}$ and $T=\varnothing$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
- Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
- If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
- If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
- Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
- After exploring all such neighbors of v, mark v and iterate

Illustration

Example

Example 2

Example 2 (cont.)

Lecture 6: More on Connectivity

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Vertex cut set and connectivity

- A proper subset S of vertices is a vertex cut set if the graph $G-S$ is disconnected
- The connectivity, $\kappa(G)$, is the minimum size of a vertex set S of G such that $G-S$ is disconnected or has only one vertex
- The graph is k-connected if $k \leq \kappa(G)$
- $\kappa\left(K_{n}\right):=n-1$
- If G is disconnected, $\kappa(G)=0$
$\cdot \Rightarrow$ A graph is connected $\Leftrightarrow \kappa(G) \geq 1$
- If G is connected, non-complete graph of order n, then

$$
1 \leq \kappa(G) \leq n-2
$$

- For convention, $\kappa\left(K_{1}\right)=0$

- Example (4.1.3, W) For k-dimensional cube $Q_{k}=\{0,1\}^{k}, \kappa\left(Q_{k}\right)=k$

Edge-connectivity

- A disconnecting set of edges is a set $F \subseteq E(G)$ such that $G-F$ has more than one component
- A graph is k-edge-connected if every disconnecting set has at least k edges
- The edge-connectivity of G, written $\lambda(G)$, is the minimum size of a disconnecting set
- Given $S, T \subseteq V(G)$, we write $[S, T]$ for the set of edges having one endpoint in S and the other in T
- An edge cut is an edge set of the form $\left[S, S^{c}\right]$ where S is a nonempty proper subset of $V(G)$
- Every edge cut is a disconnecting set, but not vice versa
- Remark (4.1.8, W) Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity

- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$
- If $\delta(G) \geq n-2$, then $\kappa(G)=\delta(G)$
that is $\kappa(G)=\lambda(G)=\delta(G)$
- Theorem (4.1.11, W) If G is a 3-regular graph, then $\kappa(G)=\lambda(G)$

Properties of edge cut

- When $\lambda(G)<\delta(G)$, a minimum edge cut cannot isolate a vertex
- Similarly for (any) edge cut
- Proposition (4.1.12, W) If S is a set of vertices in a graph G, then

$$
\left|\left[S, S^{c}\right]\right|=\sum_{v \in S} d(v)-2 e(G[S])
$$

- Corollary (4.1.13, W) If G is a simple graph and $\left|\left[S, S^{c}\right]\right|<\delta(G)$, then $|S|>\delta(G)$
- $|S|$ must be much larger than a single vertex

Blocks

- A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block

Proposition (1.2.14, W)

- Example An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- An edge of a cycle cannot itself be a block
- An edge is block \Leftrightarrow it is a bridge

- The blocks of a tree are its edges
- If a block has more than two vertices, then it is 2 -connected
- The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Intersection of two blocks

- Proposition (4.1.19, W) Two blocks in a graph share at most one vertex
- When two blocks share a vertex, it must be a cut-vertex
- Every edge is a subgraph with no cut-vertex and hence is in a block. Thus blocks in a graph decompose the edge set

Block-cutpoint graph

- The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_{i} for each block B_{i} of G. We include $v b_{i}$ as an edge of $H \Leftrightarrow$ $v \in B_{i}$

- (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a tree

Depth-first search (DFS)

- Depth-first search

- Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

Finding blocks by DFS

- Input: A connected graph G
- Idea: Build a DFS tree T of G, discarding portions of T as blocks are identified. Maintain one vertex called ACTIVE
- Initialization: Pick a root $x \in V(H)$; make x ACTIVE; set $T=\{x\}$
- Iteration: Let v denote the current active vertex
- If v has an unexplored incident edge $v w$, then
- If $w \notin V(T)$, then add $v w$ to T, mark $v w$ explored, make w ACTIVE
- If $w \in V(T)$, then w is an ancestor of v; mark $v w$ explored
- If v has no more unexplored incident edges, then
- If $v \neq x$ and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T^{\prime} rooted at v has an explored edge to an ancestor above w, then $V\left(T^{\prime}\right) \cup\{w\}$ is the vertex set of a block; record this information and delete $V\left(T^{\prime}\right)$
- if $v=x$, terminate

Example

Strong orientation

- Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong orientation, i.e. an orientation that is a strongly connected digraph \Leftrightarrow it is 2-edge-connected
- A directed graph is strongly connected if for every pair of vertices (v, w), there is a directed path from v to w
- Proposition $(2.4, \mathrm{~L})$ Let $x y \in T$ which is not a bridge in G and x is a parent of y. Then there exists an edge in G but not in T joining some descendant a of y and some ancestor b of x
- The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

